Policy Uncertainty in the Market for Coal Electricity:
The Case of Air Toxics Standards*

Gautam Gowrisankaran† Ashley Langer‡ Wendan Zhang§

October 13, 2022

Abstract

Legislation often empowers agencies to develop rules, but legal challenges may cre-
ate uncertainty, thereby increasing firm costs, delaying policy objectives, and affecting
externalities. This paper investigates policy uncertainty surrounding the Mercury and
Air Toxics Standard, estimating a dynamic oligopoly model of technology adoption and
exit for coal electricity generators that extends moment-based Markov equilibrium. To
recover annual profits, we develop estimators for ramping and operation and main-
tenance costs. Our estimated perceived enforcement probability fell as low as 43% in
2014. Removing policy uncertainty would increase expected discounted generator prof-
its by $0.930 billion, but increase pollution by $0.809 to $2.206 billion.

JEL Codes: L13, Q48, Q52
Keywords: environmental policy, air pollution, mercury, MATS, dynamic equilibrium,
moment-based Markov equilibrium

*We thank Mike Abito, James Archsmith, Nick Buchholz, Jonathan Elliott, David Evans, Matt Grennan,
Derek Lemoine, Louis Preonas, Michael Riordan, Nick Ryan, Gabriel Weintraub, and seminar and conference
participants at multiple institutions for helpful comments. We are grateful to Kiran Dwivedi, Utkarsh Kumar,
and Lorelei Loraine for excellent research assistance.
†Columbia University, CEPR, and NBER
‡University of Arizona and NBER
§Renmin University of China
1 Introduction

Uncertainty over government policy affects important and irreversible decisions, such as technology adoption, entry, and exit. In many settings, the process of forming and implementing policies creates uncertainty. For instance, in the U.S., the government frequently enacts new policies by passing legislation that empowers agencies to develop specific regulations to meet legislative goals. This approach allows existing legislation to respond to new circumstances and technologies, and may lead to more responsive policies. However, developing regulations takes time and regulations may be subject to court challenges and executive leadership changes that generate policy uncertainty. Most recently, the 2022 Supreme Court case *West Virginia et al. v. Environmental Protection Agency* added to this uncertainty by calling into question agencies’ roles in formulating regulations. These sources of uncertainty can both increase costs and delay policy objectives.

The costs of policy uncertainty depend on at least three factors: first, the extent to which compliance requires agents to make irreversible decisions, as this requires considering option value (Teisberg, 1993; Dixit and Pindyck, 1994). In particular, maintaining option value may increase compliance costs and delay compliance. Second, the costs depend on how policy uncertainty changes externalities generated by agents. For instance, the costs of policy uncertainty are affected by the extent to which uncertainty affects firm exit and adoption responses and how these affect externalities, such as pollution. Finally, the costs depend on whether the policy is eventually enforced, as even discussion of a policy can lead agents to make irreversible decisions.

This paper considers the impact of environmental policy uncertainty in the electricity sector. We estimate agents’ beliefs regarding the likelihood of enforcement of the Mercury and Air Toxics Standard (MATS). MATS required that electricity generators adopt substantial pollution abatement equipment in order to remain in the market. We model generators’ technology adoption and exit decisions within a dynamic oligopoly model. Our estimates allow us to simulate how policy uncertainty affects counterfactual outcomes in the industry, including generator exit, equilibrium costs, and pollution. We also compare MATS to other potential policies, such as subsidies for generator retirement. Because firms in many sectors—
including healthcare, telecommunications, and finance—make important decisions in the face of uncertain policies, our methods and approaches may be more broadly applicable.

Coal-fired electricity generating units (EGUs, or generators) are the primary emitters of air toxics from electricity generation. These pollutants, which include mercury, benzene, and arsenic, cause cancer, birth defects, and other serious illnesses. Despite their dangers, federal regulation of air toxics has come relatively recently and been highly uncertain. The EPA released the final MATS rule in 2012 with enforcement scheduled for 2016. In its regulatory impact analysis, the EPA calculated that compliance via technology adoption would cost generators $9.6 billion (Environmental Protection Agency, 2011). MATS has been subject to substantial judicial and administrative review, but ultimately survived. Thus, understanding the role of policy uncertainty for MATS has important financial and environmental ramifications.

While the federal government was formulating air toxics policies, some U.S. states mandated air toxics reductions for generators within their borders. In many cases, these standards were either legislative or developed with input from local power producers, and hence were largely not subject to the same level of uncertainty. These U.S. state standards therefore allow us to understand generator behavior in the absence of policy uncertainty and ultimately to identify the level of policy uncertainty encapsulated in MATS.

To answer our research questions, we estimate a dynamic oligopoly model of coal generator actions and beliefs over the period 2006-17 and then perform policy counterfactuals on our estimated model. We focus on merchant generators, or independent power producers (IPP), because they face market incentives rather than rate-of-return regulation. In our model, each year, generators subject to potential MATS enforcement form an expectation about the probability of 2016 enforcement. They then simultaneously decide whether to adopt abatement technology (if they have not already adopted), exit, or continue operating without adopting. Following this choice, generators earn profits by supplying electricity to hourly markets within the year.

Equilibrium effects are potentially important in our context. For instance, one generator’s exit will increase rivals’ profits and decrease their likelihoods of exit. Further, a generator may adopt abatement technology partially to signal a commitment to rivals to remaining in
the market (Riordan, 1992; Schmidt-Dengler, 2006).

We assume that generators compete in a Markov equilibrium where they keep track of aggregate state information. Specifically, our equilibrium concept builds on moment-based Markov equilibrium (MME, Ifrach and Weintraub, 2017). In an MME, each actor is characterized as either a fringe or dominant player. Each player keeps track of all state variables for the dominant players plus an aggregate state that summarizes fringe players’ states. While the dominant players recognize that they can affect their state variables through their actions, the fringe players take the aggregate state evolution as given.

In our approach, generators keep track of aggregate states—natural gas to coal fuel price ratio, market coal capacity, and technology adoption shares—but not of other individual generators’ states. All generators know that their actions affect the aggregate state and thus act as oligopolists. Thus, our model assumes that generators are hybrids of MME’s fringe and dominant players. Beyond aggregating information into a market state, a limitation of our approach is that we do not model ownership linkages across generators.

In general, it might be difficult to separate a higher perceived probability of future MATS enforcement from a higher exit scrap value, since both would encourage generators to exit. In our case, given our assumption that many U.S. state standards were perceived to be certain, comparing exit rates between generators subject to these standards and those subject to MATS—after controlling for other differences—identifies these perceived probabilities.

Figure 1 provides intuition behind this identification argument. The figure considers generators in our analysis data that adopted air toxics standard abatement technology within four years of enforcement. The dashed line shows the share of generators subject to U.S. state standards that had adopted, and the solid line shows this share for generators subject to MATS, both by years to enforcement. Four years prior to enforcement, adoption rates are fairly similar, but at three and two years prior to enforcement, generators subject to MATS had adopted abatement technologies at substantially lower rates than generators subject to state standards, suggesting that, in those years, generators believed the probability of 2016 MATS enforcement to be substantially below one.

Our dynamic model takes as an input generators’ profits in the electricity market given their state. Generators earn revenues from their electricity sales, and bear the costs of fuel,
Figure 1: Share of Generators in Compliance Relative to Base Year, Among Adopters

Note: Share of generators that have adopted air toxics abatement technology among generators subject to U.S. state air toxics standards, relative to the total number of generators that had not adopted abatement technology five years before air toxics standard enforcement. Calculations based on annual analysis sample.

Ramping (adjusting their generation level), and operations & maintenance (O&M). Fuel costs are observable in our data. Ramping costs have been shown to be important in the context of electricity generation (Cullen, 2014; Reguant, 2014; Linn and McCormack, 2019), and are particularly critical in our context because of changes in the electricity industry during our analysis period. Specifically, the advent of hydraulic fracturing (“fracking”) led to sharp declines in the price of natural gas fuel starting around 2009. This, in turn, led to coal generators frequently having fuel and O&M costs above wholesale electricity prices, which increased generator cycling and hence the importance of ramping costs. As an example, in 2008, coal generators in our data averaged 31.4 hours at their maximum generation level each time they ramped to maximum generation, but this dropped to 21.0 hours in 2017. If we were to ignore ramping costs, we would understate the profit reduction that this ramping imposed,
which would then understate generators’ incentives to exit, and yield biased estimates of the structural parameters.

We estimate ramping and O&M costs with new, tractable methods that incorporate dynamic linkages between hours. We develop a conceptual experiment that compares sets of hours with similar future electricity prices, where generation varied in the previous hour. The difference in operating probabilities across these sets identifies ramping costs if we can sufficiently control for the difference in continuation values across the sets. We implement this approach with a regression of the chosen generation level on revenues, lagged generation, and controls for future value. We estimate O&M costs with a related simple choice model. Combining these cost estimates with observed generation choices allows us to recover generator profits and estimate the relationship between profits and underlying dynamic states. Our cost estimation leverages the assumption that generators are price takers, but our calculation of profits—which feeds into the adoption and exit model—uses the observed behavior, which could be the result of a more general model.

Relationship to the Literature: This paper builds on three main literatures. First, we extend a recent literature that measures economic and policy uncertainty and evaluates the impact of this uncertainty on economic outcomes. Baker et al. (2016), Handley and Li (2020), and Langer and Lemoine (2020) develop measures of uncertainty using newspaper text, SEC filing text, and options prices, respectively. Kellogg (2014), Dorsey (2019), and Handley and Li (2020)—among others—examine the impact of uncertainty on economic outcomes such as oil drilling and firm investments. We add to this literature by recovering generators’ beliefs over enforcement probability and using them to perform counterfactual simulations.

Second, we contribute to a literature that estimates structural models of the electricity market, e.g. Fowlie (2010), Abito et al. (2022), Linn and McCormack (2019), Scott (2021), Elliott (2022), and Gowrisankaran et al. (2022). Beyond incorporating policy uncertainty, we develop a dynamic oligopoly model and explicitly estimate ramping and O&M costs.¹

Finally, we advance the literature that estimates dynamic oligopoly models by approximating future states. We extend MME (Ifrach and Weintraub, 2017), which builds on the

¹Gowrisankaran et al. (2022)—written by an overlapping set of coauthors—considers the role of U.S. state rate-of-return regulation in energy transitions, while this paper focuses on generators subject to market incentives.
concept of Oblivious Equilibrium (Weintraub et al., 2008) but allows for aggregate shocks and equilibrium computation when an industry is not in a steady state. Recent empirical MME applications include Gerarden (2022), Vreugdenhil (2020), Corbae and D’Erasmo (2021), and Jeon (2022). We develop a full solution equilibrium estimation approach where firms understand that their decisions affect the state evolution.

Summary of findings: We estimate that generator’s perception of the probability of MATS enforcement started at 100% in 2012, dropped to as low as 43.0% in 2014, and then rose to 99.9% in 2015, for an average probability of enforcement of 78.27%. Further, we estimate that exit and technology adoption are both costly, with an exit costing the generator $196 million, technology adoption to comply with U.S. state standards costing $151 million, and technology adoption to comply with MATS costing $550 million. Our model predicts that generators subject to MATS would spend $7.3 billion on technology adoption and $19.24 billion on total exit costs, discounted to 2012.

Our counterfactual analyses investigate the impact of eliminating policy uncertainty and reducing generator exit costs. We calculate the effect of removing policy uncertainty by investigating the differences in equilibrium outcomes under an environment where policy implementation is decided in 2016 versus a 2012 commitment to whether the standard will be enforced, both with the mean generator perceived probability of enforcement. Resolving uncertainty immediately would increase expected generator profits by $930 million in present discounted value. Nevertheless, eliminating uncertainty also *increases* expected pollution by about 65 million pounds of SO$_2$ over 30 years, valued between $809 million and $2.206 billion dollars. This occurs because generators are better able to align their adoption and exit decisions with market conditions such as fuel prices, which allows them to operate more—and generate more pollution—when market conditions are favorable. Removing exit costs—for instance by having the government pay for site remediation—reduces the number of generators in 2016 by 15.1% and increases generator profits by 49.6%, but this comes largely from government transfers.

The remainder of this paper is organized as follows. Section 2 discusses the institutional framework, data, and construction of key variables. Section 3 specifies our model of operations and adoption/exit. Section 4 explains our approach to estimation and identification.
Section 5 presents our results and counterfactuals. Finally, Section 6 concludes.

2 Institutional Framework and Data

2.1 Background on Regulation of Air Toxics

The EPA regulates 187 air toxics, which are also called hazardous air pollutants,\(^2\) under the 1990 Clean Air Act Amendments (CAAA). The EPA’s first attempt to regulate generators’ mercury emissions was the Clean Air Mercury Rule (CAMR), which was finalized in 2005. The courts vacated CAMR in 2008 under *New Jersey v. EPA*,\(^3\) which found that the EPA should have regulated mercury under a maximum achievable control technology (MACT) standard, instead of CAMR which a voluntary cap-and-trade regulation (Hudson, 2010). Although the rule was vacated, our data show that some generators did install mercury abatement technologies during the CAMR period.

At approximately the same time that *New Jersey v. EPA* vacated CAMR, the courts found in *Sierra Club v. EPA* that the EPA would have to regulate mercury and other air toxics together, rather than starting with mercury alone.\(^4\) In response to these decisions, the EPA finalized MATS in 2012, after releasing earlier versions of the proposed rule in 2011. The final MATS rule required generators to comply with MATS by 2015, but extensions to 2016 were built into the rule and were widely granted.

The investments necessary to achieve compliance with MATS are irreversible and costly, implying that generators may not want to adopt these technologies unless they are fairly certain that the technology will be required. MATS compliance technologies convert pollutants into water-soluble forms, bind them to larger particles, and precipitate the new compounds with a particulate matter catcher.\(^5\) This basic process can be achieved with different technologies, making it difficult to determine compliance from technology adoption data alone.

EPA regulations have been vulnerable to two key sources of uncertainty. First, as with

\(^2\)https://www.epa.gov/haps/what-are-hazardous-air-pollutants.
\(^3\)517 F.3d 574 (D.C. Cir. 2008).
\(^4\)551 F. 3d 1019 (D.C. Cir. 2008), also known as the “Brick MACT” decision.
\(^5\)Compliance may also potentially be achievable by fuel switching to cleaner coal.
CAMR, EPA rule-making has been subject to substantial legal challenge, up to and including Supreme Court review. Further, changes in executive leadership have drastically altered the EPA’s focus. These leadership changes interact with legal challenges, e.g., a new administration may change legal approaches.

In the context of MATS, uncertainty arose from both of these sources. The final rule was challenged by several U.S. states’ attorneys general. The result of these challenges was that, in 2015, the Supreme Court remanded MATS to the EPA for additional justification that MATS was “appropriate and necessary.” However, the order left MATS in place, which effectively meant that generators needed to comply by the 2016 deadline. In 2017, the incoming Trump administration did not file the justification but left MATS in place nonetheless.\(^6\)

U.S. states started to develop their own mercury abatement policies during the CAMR period. An early report by the Congressional Research Service lists U.S. states with their own policies, along with preliminary announcement and enforcement dates (Congressional Research Service, 2007). CAMR encouraged the development of these policies, which varied substantially across U.S. states. In some cases—e.g., Florida—these policies were cap-and-trade systems broadly similar to CAMR while in other cases—e.g., New Hampshire—they were effectively voluntary. In Pennsylvania, legislators opposed the regulation put forward by the state agency and ultimately it was overturned by the state court.

We focus on U.S. states that implemented air toxics standards with enforcement dates prior to 2016 that were not overturned by the courts. Starting with the Congressional Research Service report, we use a combination of newspaper articles, state environmental agency press releases, and state statutes to verify and update our list of U.S. states with standards and their announcement and enforcement years. On-line Appendix A1 provides details of U.S. state standards, and Table A1 in On-line Appendix A4 lists announcement and enforcement years for these standards.

In contrast to federal regulations, these U.S. state standards were generally subject to very little uncertainty for at least two reasons. First, in some states (e.g. CT and MD), these standards were passed into law by state legislatures (Halloran, 2003; Pelton, 2006). Second, even in states such as IL and MA where the standards were created as rules issued by the state

\(^6\)In 2021, the Biden Administration did file the justification of MATS.
environmental agency, they were generally developed in tandem with the owners of large coal generators (Hawthorne and Tribune staff reporter, 2006; United Press International, 2004), which led to substantially fewer and weaker judicial challenges. For this reason, we can use the decisions of generators subject to U.S. state enforcement to identify the costs of generator exit and compliance in the absence of policy uncertainty.

One complication is that U.S. state air toxics regulations were weaker than MATS in some cases. In particular, the specified standards for mercury levels were sometimes higher than under MATS. The state standards covered mercury rather than all air toxics. Enforcement in some cases consisted of the regulator approving generators’ abatement technology adoption plans rather than monitoring ex post outcomes, as occurs under MATS. These factors motivate our modeling assumption that compliance costs vary across the two sets of U.S. states.

Supporting our assumptions on the timing, salience, and importance of MATS to generators not subject to U.S. state standards, these generators responded immediately to the 2012 MATS announcement by reporting to the Energy Information Administration (EIA) that they planned to retire. Specifically, at the beginning of 2012, 8.6% of generators subject to MATS newly reported that they would retire between 2012 and 2015. The analogous 2012 increase for generators subject to U.S. state standards was only 1.4%.

Finally, emissions from coal generators were also subject to other pollution regulations during our analysis period. The most important of these is the Cross-State Air Pollution Rule (CSAPR), which regulated emissions of SO\textsubscript{2} and NO\textsubscript{X} generators in certain eastern states. Unlike for MATS, generators could comply with CSAPR by purchasing emissions permits. The market price of these permits has generally been quite low, so we do not model the costs of CSAPR compliance.

2.2 Data Sources

We create one analysis data set at the generator-hour level and another one at the generator-year level. Fossil fuel power plants are generally made up of a collection of generators that

\footnote{Calculations from EIA form 860 based on coal generators in Eastern Interconnection.}
may have different costs, capacities, and abatement technologies. Because of the differences across generators within a plant, we focus on decisions at the generator, and not plant, level. Our data sets include information on generators’ production, costs, emissions, market conditions, demand, prices, and abatement technology adoption.

Our primary data source is the EPA’s Continuous Emissions Monitoring System (CEMS) database. These data are at the generator-hour level. Our sample covers 2006 to 2017 for U.S. states in the Eastern Interconnection, because it includes the vast majority of IPP coal generators in the U.S. Each observation in the CEMS data provides the heat input of the fuel used (in MMBtu), electricity production (in MWh), and CO₂, NOₓ, and SO₂ emissions (in pounds/MMBtu) for each generator that the EPA monitors with a CEMS. The CEMS data further report a facility identifier and the location of each generator. As discussed in On-line Appendix A2, we use SO₂ as a proxy to measure the adoption of air toxics abatement technology and to measure annual generator emissions.

We form our analysis data by merging the hourly CEMS data with several other data sources. First, the EPA provides an annual-level data set that includes generator characteristics. We define a generator as using coal if the primary fuel variable includes the word “COAL.” Our definition therefore includes generators that primarily use coal, but also use other fuels.

Second, we merge in annual data from the EIA Form 923 on whether the facility is an independent power producer (IPP) or not. We consider only IPP generators because other generators, which are owned by load-serving entities, may face non-market incentives (Gowrisankaran et al., 2022). We define a coal generator to be an IPP if the facility at which it is located is an IPP at any point in our sample.

Third, we collect annual, U.S. state-level natural gas and coal prices from EIA Form 423. This form reports fuel prices by generator and year. We aggregate fuel prices to the U.S. state-year level by taking the mean weighted by annual generation at each generator. We use price data at the U.S. state-year level to measure the opportunity cost of fuel faced

8We define generators using the EPA’s definition of units, which is based on emissions release points (e.g. smokestacks). This corresponds roughly, but not exactly, to the Energy Information Administration’s definition of “boilers,” which is based on fuel combustion.

9We drop coal generators in Oklahoma, since they all appear to enter after MATS was announced.
by generators.

Fourth, we merge in hourly electricity prices by U.S. state. We obtain prices for nodes in each Regional Transmission Organization (RTO) or Independent System Operator (ISO) in the Eastern Interconnection.\footnote{Specifically, we retrieve electricity prices from the New England ISO, New York ISO, PJM, Midcontinent ISO, and the Southern Power Pool.} For some U.S. states, the data report prices for multiple nodes. For these states we take the mean over the nodes for each hour. For other states, e.g. Georgia, there is no reported electricity price. In these cases, we assign the price from the node that is geographically closest to the state.

Fifth, we deflate these prices to January, 2006 dollars. We use the Bureau of Labor Statistics’ chain-weighted consumer price index for urban consumers.

Sixth, we recover hourly U.S. state-level electricity load from the Public Utility Data Liberation (PUDL) database, which derives its data from the Federal Energy Regulatory Commission (FERC) Form 714. PUDL reports multiple measures of load. In particular, we use the reported load scaled to match the total annual load at the state level in EIA Form 861.

Finally, we use county-level weather data from PRISM. We aggregate these data to the U.S. state level by calculating the population-weighted mean of the daily minimum and maximum temperatures, using annual population data from the U.S. Census. Following Schlenker and Taylor (2021), we recover daily heating degrees, which measure the amount by which population-weighted state average daily temperature exceeds 65 degrees (if at all), and analogously cooling degrees.

We use these data to construct a number of key variables at the generator level, specifically the year of abatement technology adoption and exit, minimum and maximum generating capacity, and heat rate. On-line Appendix A2 presents details.

2.3 Descriptive Statistics

Table 1 presents generator-level descriptive statistics on our analysis data separately for generators subject to U.S. state air toxics standard enforcement and MATS. Our analysis data contain 319 IPP coal generators, of which 93 are subject to U.S. state enforcement
Table 1: Generator Descriptive Statistics by Regulatory Regime

<table>
<thead>
<tr>
<th></th>
<th>U.S. State Standard</th>
<th>MATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (MW)</td>
<td>279.69 (213.78)</td>
<td>245.74 (282.60)</td>
</tr>
<tr>
<td>Heat Rate (MMBtu/MWh)</td>
<td>10.51 (2.25)</td>
<td>11.90 (4.64)</td>
</tr>
<tr>
<td>Coal Fuel Price ($/MMBtu)</td>
<td>1.70 (0.19)</td>
<td>2.13 (0.40)</td>
</tr>
<tr>
<td>Marginal Fuel Costs ($/MWh)</td>
<td>17.85 (4.44)</td>
<td>26.23 (13.94)</td>
</tr>
<tr>
<td>Generators</td>
<td>93</td>
<td>226</td>
</tr>
<tr>
<td>Generator-years</td>
<td>841</td>
<td>2040</td>
</tr>
</tbody>
</table>

Note: Authors’ calculations based on annual analysis sample of IPP coal generators. Standard deviations are in parentheses.

and 226 are subject to MATS. They include a total of 2,881 generator-year observations. These statistics suggest that it is reasonable to assume that generators are technologically similar across the two sets of U.S. states. Specifically, generator mean capacity levels and heat rates are similar across the two sets of U.S. states, though there is substantial variation in these characteristics within each set of U.S. states. Generators in U.S. states with air toxics standards do face lower average coal fuel prices than generators subject to MATS ($1.70 vs $2.12 per MMBtu), which then feeds into lower marginal fuel costs ($17.86/MWh vs $26.07/MWh).

Table 2: Counts of Generators Adopting Abatement Technology or Exiting

<table>
<thead>
<tr>
<th>Years to Enforcement</th>
<th>State Standard</th>
<th>MATS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adoptions</td>
<td>Exits</td>
<td>Share</td>
<td>Adoptions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Complied</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>0</td>
<td>0.34</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0.51</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0</td>
<td>0.77</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1.00</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>11</td>
<td>1.00</td>
<td>14</td>
</tr>
</tbody>
</table>

Note: Authors’ calculations based on annual analysis sample of IPP coal generators.

While generators’ underlying characteristics are fairly similar across enforcement regimes, their technology adoption and exit decisions are quite different. Table 2 reports the number of generators that adopt air toxics abatement technology or exit the market by years to
enforcement. These data show that generators subject to state standards were much more likely to adopt pollution abatement technology than exit, while the reverse is true for generators subject to MATS. Although this could reflect MATS being stricter than U.S. state standards, it could also be explained by differences in underlying market conditions—notably lower natural gas prices—during the MATS enforcement period.

Table 3: Descriptive Statistics of Hourly Generation

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of Hours at Max Gen</td>
<td>0.44 (0.50)</td>
<td></td>
</tr>
<tr>
<td>Share of Hours at Min Gen</td>
<td>0.25 (0.43)</td>
<td></td>
</tr>
<tr>
<td>Share of Hours at Zero Gen</td>
<td>0.31 (0.46)</td>
<td></td>
</tr>
<tr>
<td>Generation (MWh)</td>
<td>174.14 (248.30)</td>
<td></td>
</tr>
<tr>
<td>Electricity Price ($/MWh)</td>
<td>39.14 (25.20)</td>
<td></td>
</tr>
<tr>
<td>U.S. State Electricity Demand (GWh)</td>
<td>13.32 (5.35)</td>
<td></td>
</tr>
<tr>
<td>Daily Heating Degrees</td>
<td>13.90 (14.88)</td>
<td></td>
</tr>
<tr>
<td>Daily Cooling Degrees</td>
<td>2.83 (4.82)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>26,014,143</td>
<td></td>
</tr>
</tbody>
</table>

Note: Authors’ calculations based on hourly analysis sample of IPP coal generators. Standard deviations are in parentheses.

Table 3 presents descriptive statistics on our hourly analysis sample. Over our sample period, IPP coal generators operated at maximum generation for 44% of hours, minimum generation for 25% of hours, and were off for 31% of hours, for a mean hourly generation level of 174.14 MWh. Generators in our sample faced wholesale electricity market prices with a mean of $39.14/MWh. Mean hourly U.S. state electricity demand was 13.32 GWh, which was driven by a mean of 13.90 heating degree days and 2.83 cooling degree days. All of these variables have substantial variation both over time and across generators.

Table 4 shows changes over time in the hours that coal generators spend at maximum generation each time they ramp to maximum generation alongside the ratio of the natural gas price to the coal price. Starting in 2009, both natural gas prices and hours at maximum generation declined sharply. This change was largely caused by the rise of fracking, which led to a substantial drop in the price of natural gas. In many cases, fracking caused coal generators to be replaced by combined-cycle natural gas sources as the lowest-cost fossil-fuel electricity source. Coal therefore went from generating regardless of electricity prices to only
Table 4: Change in Ramping and Natural Gas Prices Over Time

<table>
<thead>
<tr>
<th>Year</th>
<th>Hours at Max Generation Per Ramp</th>
<th>Natural Gas Price Over Coal Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>27.99</td>
<td>4.62</td>
</tr>
<tr>
<td>2007</td>
<td>32.96</td>
<td>4.39</td>
</tr>
<tr>
<td>2008</td>
<td>30.42</td>
<td>4.82</td>
</tr>
<tr>
<td>2009</td>
<td>23.08</td>
<td>2.35</td>
</tr>
<tr>
<td>2010</td>
<td>26.70</td>
<td>2.27</td>
</tr>
<tr>
<td>2011</td>
<td>24.68</td>
<td>1.94</td>
</tr>
<tr>
<td>2012</td>
<td>20.73</td>
<td>1.32</td>
</tr>
<tr>
<td>2013</td>
<td>22.76</td>
<td>1.82</td>
</tr>
<tr>
<td>2014</td>
<td>24.41</td>
<td>2.28</td>
</tr>
<tr>
<td>2015</td>
<td>17.57</td>
<td>1.41</td>
</tr>
<tr>
<td>2016</td>
<td>17.17</td>
<td>1.35</td>
</tr>
<tr>
<td>2017</td>
<td>19.94</td>
<td>1.63</td>
</tr>
</tbody>
</table>

Note: Authors’ calculations based on both hourly and annual analysis samples of IPP coal generators. Each observation in the second column pertains to one observed ramp to maximum generation. Each observation in the third column pertains to one observed generator-year.

generating when electricity prices were particularly high. This pattern demonstrates that accurately measuring ramping costs is necessary to understand how the operating profits of coal generators have changed over time.

3 Model

We develop an infinite-horizon dynamic equilibrium model of abatement technology adoption, exit, and production for coal independent power producers (IPPs), which we refer to as “generators” for brevity. Each year, t, there is a set of generators that are currently operating. Each generator, $j = 1, \ldots, J_t$, has a time-invariant heat rate, $heat_j$, and capacity, K_j, and an indicator for whether it has active air toxics abatement technology, $Tech_{jt}$. We assume that each U.S. state forms one electricity market. For brevity, our notation considers one market and hence does not include a market index.

11Figure A1 in On-line Appendix A4 shows the density of hours at maximum generation per ramp for 2008 and 2016. The 2016 distribution has substantially more weight at lower levels of hours per ramp.
We model generators as competing annually in a dynamic oligopoly through their technology adoption and exit decisions. They also compete with natural gas, renewable, utility-owned coal, and other sources. We do not directly model other sources’ entry, exit, technology adoption, and production decisions, but treat them as exogenous, though state-contingent and time-varying. Section 3.1 discusses the state space and equilibrium.

Each year t proceeds as follows. First, the policy environment updates, with policymakers announcing new standards and generators obtaining information about previously announced standards. In some year t_0, the regulator announces that an air toxics standard will be enforced τ_0 years in the future. Before this year, generators do not expect to be subject to any air toxics regulation. In years when enforcement is $0 < \tau \leq \tau_0$ years away, generators use new information to update their common belief of the probability that enforcement will occur.\(^{12}\) We denote the full set of perceived probabilities P_{τ_0}, \ldots, P_1. Upon forming beliefs P_τ, generators believe that they will continue to perceive the probability of enforcement to be P_τ until the announced air toxics standard enforcement date. For U.S. states which implemented their own air toxics standards, we assume that $P_{\tau_0} = \ldots = P_1 = 1$.

Second, generators make adoption and exit decisions.\(^{13}\) Generators that have not yet adopted abatement technology must decide whether to adopt the technology and pay an adoption cost $A - \varepsilon_{jat}$, continue operating without adopting the technology and receive a payment ε_{jct}, or exit and earn a scrap value $X + \varepsilon_{jxt}$. The cost shocks to generator j, $\tilde{\varepsilon}_{jt} \equiv (\varepsilon_{jat}, \varepsilon_{jct}, \varepsilon_{jxt})$, are type 1 extreme value i.i.d. across options, years, and generators, and are generator j’s private information at the decision point. These shocks arise as generators may have idiosyncratic maintenance needs or contracts that cause variation in the costs of adopting technology or exiting. Generators that have already adopted abatement technology only need to choose between continuing to operate or exiting. Section 3.2 details annual dynamic optimization.

Third, conditional on the technologies and capacities of generators and other sources, generators compete in hourly electricity markets and earn profits from selling electricity.

\(^{12}\)While we allow for uncertainty about whether the standard will be enforced, we assume that the level of the standard and the date of potential enforcement is certain.

\(^{13}\)We do not model generators’ decisions to enter. Coal entry during our sample period is very limited and entry that occurred resulted from prior decisions.
Their annual revenues from selling electricity are the sum of the hourly wholesale electricity market prices times the quantity supplied. Generators bear three types of costs: fuel; ramping; and operation & maintenance (O&M). Ramping costs imply that production decisions across hours are dynamic, while O&M costs are essentially the remaining per-MW cost of generating in a given hour. Section 3.3 discusses hourly optimization.

Finally, any exit or abatement adoption decisions made in this year are realized. At this point, if this is the final year before potential enforcement, the regulator enforces the air toxics standard with probability P_1. If it is enforced, generators that have not adopted are forced to exit immediately.

3.1 Annual State Space and Equilibrium

Generator j’s adoption and exit decisions are a function of its annual dynamic state and its perceptions of its competitors’ actions at this state. Generator j’s annual state includes its non-time-varying characteristics: heat rate, $heat_j$, capacity, K_j, and coal price, f^C; its time-varying characteristics: annual profits, Π_{jt}, $Tech_{jt}$, the belief year, τ, years to potential air toxics standard enforcement, τ',14 and its cost shocks, $\vec{\varepsilon}_{jt}$; the characteristics of its competitors, both IPP coal generators and other sources; and fixed market characteristics.

We assume that the market reflects a Markov equilibrium where each generator includes in its state a set of aggregated market characteristics. This set includes (1) the natural gas to coal fuel price ratio, (2) the (combined IPP and non-IPP) coal capacity relative to the 95th percentile of hourly load in the market, and (3) the share of IPP coal capacity that has adopted abatement technology. Our approach approximates a Markov-perfect equilibrium in a way that is similar to moment-based Markov equilibrium (MME), but where every generator recognizes that it can influence the aggregate state. This simplification is important for estimation because the large number of competitors would otherwise result in a curse of dimensionality problem.

We include the fuel price ratio as a market characteristic because relative natural gas fuel price affects generators’ current and expected future profits and therefore their adoption and

14 If an air toxics standard has not yet been announced or the enforcement year has already passed, then $\tau = 0$.

16
exit decisions. For instance, if natural gas prices are low, then coal generators expect to operate less, receive lower prices when they operate, pay higher ramping costs, and ultimately earn lower profits.15 Coal capacity and adoption share approximate dynamic oligopoly incentives in this market. While we allow for the coal capacity and adoption share variables to be determined in equilibrium, we assume that the fuel price ratio evolves exogenously, meaning that it does not respond to coal technology adoption or exit.

Consistent with dynamic oligopoly, we allow generators in our equilibrium to understand that their actions influence the aggregate industry state. Specifically, a generator which chooses not to exit understands that the coal capacity next period will be higher than if it chooses to exit. Similarly, a generator recognizes that the share of capacity having adopted abatement technology next period will be higher if it has adopted abatement technology than if it has not. Modeling expectations of market evolution in this way allows generators to use their adoption and exit decisions as costly preemptive signals.

We assume that generators believe that the three aggregate market states will evolve according to autoregressive processes. Specifically, we specify separate AR(1) regressions with normally distributed residuals for the evolution of each of the state variables. These AR(1) processes approximate the combination of exogenous market-level unobservables and the structural unobservables, $\vec{\varepsilon}$, for all generators. Because each generator believes that the market technology adoption share will depend on whether it adopts, we specify different AR(1) regressions for adoption share conditional on adoption versus non-adoption.16 Because market fundamentals may vary across U.S. state and belief year τ, we further disaggregate our AR(1) regressions to this level.

At an equilibrium, aggregated generators’ actions must be consistent with the market evolution resulting from those actions. Specifically, an equilibrium for a U.S. state and belief year consists of a set of strategies for every player and regression coefficients for each of the AR(1) regressions. Together, these must satisfy that 1) the state-contingent strategies

15We focus on natural gas as the alternative fuel source since other fossil fuels such as distillate fuel oil are more expensive than both coal and natural gas generation during this period. Further, we do not include renewable generation during this period because generation was fairly low in the markets we study.

16We do not specify different AR(1) regressions for the coal capacity ratio since generators that exit no longer value the market state.
reflect optimizing behavior given the regression coefficients, and 2) data simulated from these strategies yield these regression coefficients. The equilibrium of our model therefore reflects a fixed point of these decisions and the expectations over state-contingent IPP coal capacity that these decisions imply.

3.2 Annual Dynamic Optimization

Generator j makes adoption and exit decisions based on its state, $(\Omega_{jt}, Tech_{jt}, \tau, \tau', \vec{\varepsilon}_{jt})$, where Ω_{jt} includes j’s non-time-varying characteristics and the three aggregated market characteristics noted above. We now discuss how generators choose actions as a function of their state.

When $\tau = 0$, generators face a relatively simple choice between exiting or continuing. When $\tau > 0$, generators that have not yet adopted abatement technology face an additional decision of whether to adopt the technology. In this case, the value of continuing depends fundamentally on whether $\tau = 1$ or $\tau > 1$ because if the generator chooses to continue when $\tau = 1$ and the air toxics standard is enforced, the generator will be forced to exit.

Consider first the case of generator j one year from enforcement ($\tau' = 1$) that has not previously adopted abatement technology. This generator faces the three choices of continuing without adopting, adopting, or exiting. If the generator continues without adopting and the air toxics standard is enforced, it will be forced to exit and receive X. We can write the Bellman for this case as:

$$V(\Omega, Tech = 0, \tau, \tau' = 1, \vec{\varepsilon}) = \max \left\{ \Pi(\Omega) + \Pi(\Omega) + P_\tau X + (1 - P_\tau)\beta E[V(\Omega', 0, \tau, 0, \vec{\varepsilon})|\Omega, No Standard] + \sigma \varepsilon_c, \right. \right.$$

$$\Pi(\Omega) - A + \beta \left\{ P_\tau E[V(\Omega', 1, \tau, 0, \vec{\varepsilon})|\Omega, Standard] \right. \right.$$

$$\left. + (1 - P_\tau)E[V(\Omega', 1, \tau, 0, \vec{\varepsilon'})|\Omega, No Standard]\right\} + \sigma \varepsilon_a, \right.$$

$$\Pi(\Omega) + X + \sigma \varepsilon_x \right\},$$

where Ω' is the Ω component of the state next period. Equation (1) shows that the perceived

17Because generators believe that their enforcement beliefs will remain constant in the future, we must consider instances where belief year, τ, is greater than one even though $\tau' = 1$.

18
probability of air toxics standard enforcement enters into the $\tau'=1$ value function.18 In (1), the first choice is to continue operating without adopting abatement technology. With this choice, with probability P_τ, the air toxics standard will be enforced and the generator will be forced to exit, while with probability $1-P_\tau$, the air toxics standard will not be enforced and the generator will never be forced to comply. The second choice is to invest in abatement technology this year, which we indicate by updating Tech to 1 in the future state. In this case, the generator is not forced to exit regardless of whether the air toxics standard is enforced. The third choice is exit. Generators that have already adopted face a choice between continuing and exiting, with no probability of being forced from the market if the standard is enforced.

Turning to the case of $\tau'>1$, we can write the Bellman equation for a generator that has not previously adopted as:

$$V(\Omega, 0, \tau, \tau', \varepsilon) = \max \{ \Pi(\Omega) + \beta E[V(\Omega', 0, \tau, \tau'-1, \varepsilon')|\Omega] + \sigma \varepsilon_c, \Pi(\Omega) - A + \beta E[V(\Omega', 1, \tau, \tau'-1, \varepsilon')|\Omega] + \sigma \varepsilon_a, \Pi(\Omega) + X + \sigma \varepsilon_x \}. \quad (2)$$

In (2), generators believe that air toxics standard enforcement will be revealed in τ' years and that they will continue to perceive an enforcement probability of P_τ for the next $\tau'-1$ years. Unlike with $\tau'=1$, there is no chance of enforcement occurring in this year.

3.3 Hourly Optimization

Each year, t, includes hours $h = 1, \ldots, H$, with generator j choosing a generation quantity q_{jh} in each of these hours. It chooses each q_{jh} to maximize expected annual profits, which are the sum over hours of revenues minus its three costs: fuel, ramping, and O&M. Generator j’s fuel costs per MW of production are the product of the coal price, f^C, and heat$_j$.

We model ramping and O&M costs by developing and estimating a dynamic model of hourly operations. Following Linn and McCormack (2019), we model the generator as having

18We assume that Π is a function of Ω but not $Tech$ for two reasons. First, our O&M cost estimates are similar for generators that have adopted technology and those that have not. Second, while heat rates do increase slightly following technology adoption, these effects are small (though they could be added to the calculation of profits in a straightforward way).
a choice in each hour between: (1) generation at capacity, K_j; (2) minimum generation L_jK_j for $L_j \in (0, 1)$; and (3) not generating. In order to specify the generator’s hourly operations Bellman equation, we assume that the generator makes an infinite horizon decision with annual discount rate β. We also assume that firms that own multiple generators make independent state-contingent profit maximization decisions for each generator.

At any hour h, let $q_{jh} \in \{0, L_jK_j, K_j\}$ denote the current generation level, \bar{q}_{jh} denote the level in the previous hour, and ω_{jh} denote the generator’s short-run dynamic state, which includes information that affects current and future prices. For instance, ω_{jh} might include load, the time of day, weather, and rival generators’ availability. Further, let $r_{\bar{q}q}$ be the cost of ramping from \bar{q} to q for $\bar{q} < q$; om be the per MWh O&M costs, and $p(\omega, q)$ be the expected wholesale electricity price given ω and q. Combining these terms, generator j’s hourly Bellman equation is:

$$v(\bar{q}_j, \omega_j) = \max_q \left\{ \pi(\bar{q}_j, \omega_j, q) + \beta^{1/H} E[v(q, \omega_j^\prime | \omega_j)] \right\},$$

where per-hour profit is:

$$\pi(\bar{q}_j, \omega_j, q) \equiv q \times [p(\omega_j, q) - heat_j \times f^C - om] - 1 \{\bar{q}_j < q\}r_{\bar{q}q} + \sigma^g \varepsilon_{jq}^g.$$

Our model allows om to affect the generator’s marginal costs but not fixed costs. We assume that the generation unobservable ε_{jq}^g is type 1 extreme value and i.i.d. across generation levels, hours, and generators. We further assume that a generator observes its own ω_j and ε_{jq}^g at the start of each hour, but forms expectations about future values of ω_j based on the current state. Because operating profits are measured in dollars, we include a parameter, σ^g, that scales ε_{jq}^g. We sum the optimized hourly profits into annual profits, $\Pi_{jt} = \sum_h \pi(\bar{q}_{jh-1}, \omega_{jh}, q_{jh})$.

19Dividing generation into three levels intuitively makes sense if generators take hourly electricity prices as given, bear a startup cost, have other ramping costs that are proportional to the increase in generation, and have a minimum generation level of L_jK_j.

20For simplicity, our base specification does not allow for “deramping” costs, although we provide additional regressions that allow for this possibility.
4 Estimation and Identification

This section discusses estimation and identification of generation cost parameters, annual profits and pollution, and the parameters governing adoption and exit.

4.1 Generation Cost Parameters

Our model depends fundamentally on generators earning profits in hourly electricity markets. Hourly profits are equal to revenues minus fuel, ramping, and O&M costs. We calculate revenues directly from our data by multiplying wholesale electricity price, \(p_h \), with quantity supplied, \(q_h \). Our data also include generator heat rates and fuel prices, which allow us to calculate fuel costs.

We do not directly observe ramping or O&M costs, and therefore we recover them from observed behavior. We estimate these costs assuming that generators are price takers in the hourly electricity markets. As we discuss below, conditional on our cost estimates, we will use observed generation decisions, which are consistent with dynamic oligopoly interactions, to calculate profits.

We develop a simple estimator of our hourly dynamic model that recovers ramping costs. In principle, ramping costs are identified by the extra revenue that generators expect to earn when they increase their generation level. The issue is that ramping is fundamentally dynamic: generators may increase generation in an hour in order to capture the option value of remaining at a high generation level in future hours. Our estimation approach involves finding “conceptual experiments” where the generator finds itself in different sets of situations with identical information about future prices, \(\omega_h \), but where generation in the previous hour varies across the sets. The difference in the probability of generation levels across these sets identifies the ramping costs.

We implement our approach with a trinomial choice model of hourly generation levels that follows from equations (3) and (4):

\[
\begin{align*}
u(q_h|\tilde{q}_h, \omega_h) &= \frac{1}{\sigma_g} [q_h p_h] - \frac{1}{\sigma_g} r_{\tilde{q}_h, q_h} \mathbb{1} \{ \tilde{q}_h < q_h \} - \psi x(q_h, \omega_h) + \varepsilon_{q_h}.
\end{align*}
\]
There are four key parameters for each generator: the standard deviation of the unobservable, \(\sigma^g \), which scales revenues, the costs of ramping from off to \(LK \) (\(r_{0,LK} \)), off to \(K \) (\(r_{0,K} \)), and \(LK \) to \(K \) (\(r_{LK,K} \)). In this regression, the \(x_h \) variables serve as controls that capture anything that might be included in non-ramping costs and the continuation value relative to not generating, which ties this regression to our “conceptual experiments.” Regression controls include a flexible functional form of generation quantity, year relative to first year and its square, fuel price ratio and its square, relative coal capacity, abatement technology, fuel cost per MW, weather, hour-of-day, month, and current load. We explicitly do not include \(\tilde{q}_h \) in these controls. On-line Appendix A2 describes how we classify each hour into off, minimum, and maximum generation bins.

Comparing (5) to equations (3) and (4), we have made two changes. First, we have collapsed the future value term in (3) and the fuel cost and operations and maintenance cost terms from (4) with \(x(q_h, \omega_h) \). Second, we divided each coefficient by the standard deviation of the unobservable. This change allows us to estimate generation decisions in a multinomial choice framework, where we are now estimating a ramping cost parameter of \(r_{\tilde{q}_h,q_h}/\sigma^g \). We therefore recover an estimate of ramping costs in dollars, \(r_{\tilde{q}_h,q_h} \), by dividing our estimate of the ramping cost parameter by the estimated coefficient on revenues.

Identification of ramping costs hinges on the ability of \(x_h \) to appropriately capture the generator’s relative state-contingent continuation values. This relies on three exclusion restrictions: that current revenues, \(q_h p_h \), and the lagged generation level, \(\tilde{q}_h \), do not enter into \(x_h \), and that units take wholesale electricity prices on the hourly market as given. Thus, \(x_h \) must capture the generator’s expectations of relative future values sufficiently well that current revenues and lagged generation do not provide additional information on these expectations. To ensure that \(x_h \) is sufficiently rich, we estimate it with a flexible functional form that captures expected future generator costs and revenues.\(^{21}\)

Fundamentally, our approach is based on comparing generation across hours with iden-

\(^{21}\)We have estimated alternative specifications where we interact \(x_h \) with functions of prices over the following 20 hours. These specifications should very accurately control for continuation values, but since they include future prices, they incorporate more information than generators would actually have available. We obtain broadly similar ramping cost estimates with either specification, so use the ones based on available information.
tical prices and continuation values but different lagged generation levels. An alternative approach would be a conditional choice probability (CCP) estimator (e.g. Hotz and Miller, 1993; Arcidiacono and Miller, 2011), which uses a log transformation of the differences in probabilities across generation level by state. Given the infrequency with which generators change generation levels, many of these probabilities would be very close to 0, making it difficult to estimate the future values accurately. In contrast, our approach only requires that we have sufficient information to appropriately control for generators’ continuation values and sufficient observations to have “matches” where continuation values are very similar, but lagged generation levels differ.

Turning to O&M costs, $om \times q$, we assume that they are proportional to the quantity generated, implying that they act much like an option-specific constant term in equation (5), entering via $\psi x(q_h, \omega_h)$. However, this term also includes fuel costs and the continuation value, so we cannot recover O&M costs directly from this regression. Recovering fuel costs is straightforward given that we observe heat rates and fuel prices, so the key challenge is in separating O&M costs from continuation values.

We recover O&M costs by focusing on the production decision within a set of hours where the continuation values are very similar. In particular, we estimate O&M costs with regressions using a subsample consisting of windows of hours around an actual ramp or deramp. We assume that the generator knows that it will be ramping or deramping exactly once during this window, as observed in the data. This implies that its continuation value will be the same regardless of which hour it chooses to change generation within the window, which allows us to separate O&M costs from continuation values.

We operationalize this idea by using a window around ramping events in our hourly data that includes the 6 hours before, the observed hour, and the 5 hours after a generation change. We focus on the subsample of windows around when generators ramp from minimum to maximum generation or vice versa.22 We further assume that the generator has perfect information about the wholesale electricity prices for every hour in this window.

Given these assumptions, the generator chooses the hour in which to change generation

22These changes are better for identifying O&M costs than hours when generators turn off or on because those decisions are more likely to be affected by unobservable factors such as required maintenance, and so may not fully be responding to immediate market price incentives.
that maximizes the sum of profits over this window. We explain our approach for windows where generator j is ramping up to maximum generation; windows where the generator is ramping down to minimum generation are similar, but in reverse. We estimate a multinomial logit model with 12 choices, one for each hour in the window. For a window that begins in hour h, we can write the relative profits in the window, w, from ramping at hour $h \in \{h, \ldots, h+11\}$ as:

$$
\pi_{jh}^w = \sum_{h=1}^{h+11} (p_{\tilde{h}} - heat_j \times f^C)(K_j - K_j L_j) - om \times (h + 12 - h) \times (K_j - K_j L_j) + \sigma^w \varepsilon_{jh}^w,
$$

where the parameter om gets multiplied by the total additional generation in all hours in the window starting at h. The unobservable ε_{jh}^w will capture the conditional distribution of the underlying structural residuals ε^q that stem from the decision to ramp at hour h, and have a standard deviation, σ^w.23 As an approximation, we use a type 1 extreme value distribution for ε_{jh}^w. Because the generator bears the same ramping costs and continuation values regardless of its choice of hour in which to ramp, these terms do not enter its maximization in (6).

Our model identifies om from the increase in hourly profits in the hour the generator changes generation. In our ramping window subsample, we always observe the generator changing generation in the seventh hour of the window. Figure 2 uses this subsample to provide intuition behind the identification of our estimates. The figure shows the hourly profit per MW before O&M costs (so revenues minus fuel costs) in the hours around each ramp from minimum to maximum generation or back.24 We indicate the fact that the generator always chooses to ramp in between hour 6 and hour 7 with a grey vertical dashed line. The O&M costs that rationalize this choice are higher than the profit bar in hour 6, but lower than the profit bar in hour 7. The mean of these estimates is approximately $17, as indicated with the horizontal grey dotted line.

23 The deramping case sums backwards over the relative profits from hour $h + 11$ to hour h.

24 For hours when the generator ramps from minimum to maximum generation, the hours are listed in order, while for hours when the generator ramps from maximum to minimum generation, the hours are reversed so that hour 12 occurs first and hour 1 occurs last.
Figure 2: Increase in Generating Profit Net of Operations and Maintenance Costs

Note: Created from the sample of 12-hour windows around generator ramping events into or out of maximum generation. Hourly profits per MW before operations and maintenance are equal to electricity price minus heat rate times coal price. The horizontal axis represents the number of hours at the lower generation level. The vertical line indicates that generators always choose to ramp up in the 7th hour and down in the 6th hour. The horizontal line indicates the mean potential O&M cost that would rationalize this behavior.

4.2 Annual Profits and Pollution

Having recovered ramping and O&M costs, we then calculate each generator’s annual profits and pollution. Specifically, we write annual expected profits as:

\[
\Pi_{jt} = \sum_{h=1}^{H} \left[q_{jh} p_h - q_{jh} \times \text{heat}_j \times f^C - \hat{r}_{q_{jh},q_h} \mathbb{1}\{q_{jh} < q_{jh}\} - \hat{m} \times q_{jh} \
ight. \\
\left. - \hat{\sigma}^g \text{Pr}(q_{jh}|\bar{q}_{jh},\omega_{h}) \log(\text{Pr}(q_{jh}|\bar{q}_{jh},\omega_{h})) \right],
\]

where we use our estimates of \(r_{q_{jh},q_h}\) and \(\sigma^g\) from (5) and \(om\) from (6). The second line in (7) captures the expected value of the residual, \(\varepsilon^g_{q_{jh}}\), conditional on choice \(q_{jh}\). We calculate the
estimated probability of each action at each state, \(Pr(q_h|\tilde{q}_h, \omega_h) \), using our estimates from equation (5).

While (7) focuses on profits for one coal generator over one year, we use annual profits in our dynamic model of adoption and exit. Specifically, we need to predict the generator’s \(j \) expected annual profits across potential states \(\Omega \). We perform this prediction by estimating \(\Pi_{jt} \) for each generator-year in our sample and then regressing \(\Pi_{jt} \) on gas fuel price, relative coal capacity, their interaction, and generator \(j \)’s fixed characteristics, \(K_j \) and \(heat_j \). Approximating the profit surface in this way imposes a functional form on the impact of these characteristics that allows us to interpolate—and potentially extrapolate—for our estimation and counterfactuals to states that we do not observe in the data. The identification assumption here is that this interpolation is valid.\(^{25}\) We predict state-contingent annual profits in this way rather than using actions taken in the model, because our approach recovers cost estimates but not the choices in counterfactual situations.

We also want to understand how SO\(_2\) pollution would vary under counterfactual policy environments. We focus on SO\(_2\), since the value of MATS pollution reductions as calculated by the EPA (Environmental Protection Agency, 2011) is dominated by SO\(_2\) and, consistent with our measure of MATS compliance, reductions in other pollutants will likely be approximately proportional to SO\(_2\) reductions. For these simulations, we approximate a pollution surface with a similar regression to our profit regression, but where we use the log of annual pollution as the dependent variable.

4.3 Adoption and Exit Parameters

We estimate our adoption and exit parameters using a full solution, nested-fixed-point approach, where the unit of observation is a generator in a year.\(^{26}\) Our parameters are the exit scrap value, \(X \), abatement technology adoption cost, \(A \), standard deviation of the unobservable, \(\sigma \), and the probabilities of MATS enforcement, \(P_4, \ldots, P_1 \). Because of the differences

\(^{25}\)We have also investigated alternative specifications of this regression, such as a logged functional form, finding similar results.

\(^{26}\)Here, we choose a nested-fixed-point approach rather than a CCP approach, because generators subject to MATS base their decisions on subjective enforcement probabilities that they revise over time, implying that the data at time \(t + \tau \) will not inform us about generators’ expectations at time \(t \).
between U.S. state air toxics regulations and MATS discussed in Section 2.1, we allow A to vary based on whether the generator is subject to U.S. state or MATS enforcement. We assume that generators that comply with their U.S. state standards do not face additional costs from MATS compliance.\footnote{Two pieces of evidence support this assumption. First, as discussed in Section 2.1, generators subject to state standards largely did not change their announced retirement decisions in response to MATS’ announcement. Second, using our analysis data, we find that SO_2 emissions rates for generators complying with U.S. state standards were not significantly lower in 2016 relative to their enforcement years.}

For generators in the years between air toxics standard announcement and enforcement which have not yet adopted, the dependent variable is the choice of continuing to operate, exiting, and adopting. For generators in other years, the dependent variable takes on two values, continuing to operate and exiting.\footnote{We do observe adoption in years before standards’ announcements. Although we do not directly model the choice of adoption in these years, our data reflect each generator’s accurate adoption status at the start of any year.}

We search over values of these structural parameters. For each candidate parameter vector, U.S. state, and belief year, we solve for the equilibrium, which we use to simulate a likelihood. The likelihood for any generator and year is the probability of the equilibrium strategy given the observed action of continue, adopt, or exit, evaluated at the equilibrium. Similarly to Ifrach and Weintraub (2017), we recover the equilibrium as the fixed point of a process that iterates between solving individual optimization decisions and estimating the expectations regarding market evolution that are generated by these decisions.

As discussed in Section 3.1, market evolution is governed by three continuous states that evolve according to AR(1) processes. We initialize these processes to the values in the observed data. Since the fuel price ratio evolves exogenously to our model, this AR(1) regression remains constant throughout our solution process. We update the coal capacity and adoption share AR(1) processes by solving for the fixed points of generator Bellman equations, simulating data given optimizing choices, and rerunning the regressions that underlie these processes. We repeat this process until we reach a fixed point in both the regression coefficients and the Bellman equations. We calculate standard errors via a parametric bootstrap, which we discuss in more detail in On-line Appendix A3.

For generators subject to U.S. state enforcement, A and X are identified by the state-
contingent rates at which generators choose each action given their expected profits. The scale parameter, σ, is in turn identified by the inclusion of annual profits from the hourly operations model. Identification of the MATS enforcement probabilities stems from the intuition underlying Figure 1: to the extent that generators subject to MATS delay exit and adoption relative to generators subject to U.S. state enforcement, our model will recover lower estimates of their enforcement probabilities. While we allow A to vary based on whether the generator is subject to MATS, identification is based on the exclusion restriction that exit costs are the same for all generators. Finally, we do not include an annual fixed cost of operation, since these are difficult to identify separately from exit costs (Collard-Wexler, 2013). Thus, our estimates of X will capture the present discounted value of any fixed costs of operation.

5 Results and Counterfactuals

5.1 Generation Cost Parameter Results

We estimate ramping and O&M costs using our hourly generation model. We estimate ramping costs using (5), separately for generators in 5 capacity bins (0–100MW, 100–300MW, 300–500MW, 500–700MW, and >700MW). Figure 3 reports the ratios of the ramping coefficients, $\hat{r}_{\sigma g}$, to the operating revenue coefficient, $\hat{1}_{\sigma g}$, for all ramping parameters and all but the highest capacity bin. We find that ramping from minimum to maximum generation (represented by red diamonds) is the least costly, ramping from off to minimum generation (green circles) is more costly, and ramping directly from off to maximum generation in one hour (blue triangles) is the most costly. The fact that ramping from zero to minimum is more costly than from minimum to maximum likely reflects startup costs, which are captured by our ramping cost estimates. Figure 3 further makes clear that ramping costs are very clearly increasing in generator capacity. In fact, the largest generators have extremely high ramping costs, with ramping from off to minimum generation costing approximately $1.05 million.

Table 5 provides further details on the ramping cost estimates for generators between 100

29The highest capacity bin has ramping estimates that follow the same pattern as the smaller bins, but has a substantially larger scale. We do not show the results for this bin for scaling reasons.
Figure 3: Variation in Ramping Cost Estimates with Capacity

Note: Ramping costs are ratios of estimated ramping coefficient to operating revenue coefficient from separate regressions by capacity bin. Symbols are placed at the midpoints of the capacity bins.

and 300MW of capacity, which is the modal capacity bin. The first column presents results without any controls for continuation value, while the second column includes our full set of controls (which is what is presented in Figure 3). Controlling for continuation value appears to be extremely important for estimating ramping accurately. With controls, operating revenue is less important by an order of magnitude, and this increases the estimated ramping costs similarly. With controls, we estimate that ramping from off to minimum generation costs these generators $132,000 while ramping from minimum to maximum generation costs $75,000. Further, we estimate that ramping from 0 straight to maximum generation costs these generators $233,000. Thus, ramping directly from off to maximum generation costs $26,000 more than dividing the ramp across two hours. This is consistent with it being costly for generators to ramp quickly to full generation.
Table 5: Estimates of Ramping Costs: 100–300MW Capacity

<table>
<thead>
<tr>
<th></th>
<th>No Controls</th>
<th>With Controls</th>
<th>With Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Rev. (Mill. $)</td>
<td>763.87***</td>
<td>76.47***</td>
<td>76.58***</td>
</tr>
<tr>
<td></td>
<td>(0.46)</td>
<td>(0.84)</td>
<td>(0.84)</td>
</tr>
<tr>
<td>Ramp 0 to Min</td>
<td>−9.03***</td>
<td>−10.13***</td>
<td>−5.21***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>Ramp Min to Max</td>
<td>−6.06***</td>
<td>−5.77***</td>
<td>−2.83***</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Ramp 0 to Max</td>
<td>−37.82***</td>
<td>−17.82***</td>
<td>−9.97***</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.06)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>Deramp Min to 0</td>
<td>–</td>
<td>–</td>
<td>−4.87***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.18)</td>
</tr>
<tr>
<td>Deramp Max to Min</td>
<td>–</td>
<td>–</td>
<td>−2.94***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.19)</td>
</tr>
<tr>
<td>Deramp Max to 0</td>
<td>–</td>
<td>–</td>
<td>−8.74***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.21)</td>
</tr>
<tr>
<td>N</td>
<td>28,686,219</td>
<td>28,686,219</td>
<td>28,686,219</td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.7612</td>
<td>0.8570</td>
<td>0.8571</td>
</tr>
</tbody>
</table>

Note: Regression controls include a flexible functional form of generation quantity, year relative to first year and its square, fuel price ratio and its square, relative coal capacity, abatement technology, fuel cost per MW, weather, hour-of-day, month, and current load. Standard errors are in parentheses. ***,**,* indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 5, Column 3 allows for the possibility that deramping, or reducing generation, is also costly. The results in Column 3 show ramping costs that are substantially lower than Column 2 and deramping costs that are similar in magnitude to ramping costs. However, a comparison of Columns 2 and 3 shows that the total cost of ramping from any level to another level and then deramping back to the original level has approximately the same costs across models. Since the number of ramps will be approximately equal to the number of deramps over a year, this means that our estimates of annual generator profits will be very similar with either of these specifications of ramping costs. We choose to use the second column, without deramping costs, as our base specification.

Our ramping cost estimates are consistent with the finding that starting up from off is particularly costly. Engineering estimates suggest that start-up costs for large coal plants may reach $500,000 (Kumar et al., 2012). Engineering estimates conceptually differ from ours in that they are based on models of excess fuel costs rather than revealed preferences, and hence do not include other potential costs such as wear and tear. Estimates based on revealed preferences from Cullen (2014) similarly find extremely large start-up costs. Reguant (2014) finds start-up costs of €15-20k for a 150MW coal generator and approximately €30k for a 350MW coal generator in Spain.
Our identification argument for ramping costs relies on our ability to accurately capture expected relative continuation values with our controls. For our ramping cost estimates to be consistent, future prices should not predict current actions, conditional on our controls. In order to provide evidence on the suitability of our controls, we compare future mean electricity prices across generators’ actual generation decisions, conditioning on the difference in our predicted net continuation values between maximum and minimum generation.

Figure 4: Comparison of Future Electricity Prices By Generation Level

Note: Each panel plots price densities, separately by hours when the generator chooses minimum or maximum generation for generators with 100–300 MW of capacity. The top left panel shows this for all hours. The other panels show hours where the difference in other costs and relative continuation value—ψx—from operating at maximum minus minimum generation is within particular quantiles.

Specifically, Figure 4 conditions on three ventiles of the relative continuation value distribution and examines how the densities of the future price distribution over the subsequent
20 hours differ across chosen minimum or maximum generation. The green dashed line in each picture shows the future mean distribution of electricity prices for generators who chose to produce at their minimum, and the orange solid line shows the distribution for generators who chose to produce at their maximum. The top-left panel shows the two distributions unconditional on relative continuation value. As we would expect, when future prices are low, generators are choosing minimum generation more often. However, once we condition on relative continuation value, the lines are quite similar.

Table 6: Estimates From O&M Regression

Benefit per Million Dollars of Variable Profit	10.55*** (0.45)
Cost per TW of Additional Production	-160.18*** (9.07)
Observations	384,672
Pseudo R2	0.0043

Note: Multinomial logit regression of choice of number of hours produced within a 12 hour window surrounding each ramping event into or out of maximum generation. Standard errors are in parentheses. ****, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

We estimate O&M costs from (6). Table 6 presents our estimates. By dividing the cost per additional TW of production by the benefit per million dollars of variable profit, we find that generators on average pay O&M costs of $15.18 per MWh of generation, or just over $3,000 for a 200MW generator operating at full capacity. This estimate closely matches the raw data presented in Figure 2, and is close to the EIA’s National Energy Modeling System estimates of approximately $14/MWh, which is used in Linn and McCormack (2019).

5.2 Inputs to Adoption and Exit Model

Once we have recovered estimates of ramping and O&M costs, we can calculate the generator profits we observe in the data. The 5th percentile of calculated profits is -$15 million and the 95th is $56 million, with 65% of annual profits above zero. The sizable share of calculated profits that are below zero suggest that there may be substantial option value to remaining

30 We chose these ventiles of the future price distribution because we would expect generators to be making a choice between minimum and maximum generation when the relative continuation value is fairly high.
in operation or sizable exit costs. Online Appendix Figure A2 presents a histogram of these calculated profits.

Table 7: Profit and Pollution Surface Regression Results

<table>
<thead>
<tr>
<th></th>
<th>Annual Profit (millions of $)</th>
<th>Log Annual Pollution (lbs of SO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliant</td>
<td></td>
<td>−1.285*** (0.054)</td>
</tr>
<tr>
<td>U.S. State Coal Share</td>
<td>−5.505*** (1.701)</td>
<td>0.335*** (0.064)</td>
</tr>
<tr>
<td>Gas to Coal Fuel Price Ratio</td>
<td>9.371*** (0.819)</td>
<td>0.798*** (0.042)</td>
</tr>
<tr>
<td>Interaction of Coal Share and Price Ratio</td>
<td>2.681*** (0.773)</td>
<td>−0.182*** (0.064)</td>
</tr>
<tr>
<td>U.S. State Coal Fuel Price ($)</td>
<td>16.231*** (1.230)</td>
<td>−0.728*** (0.182)</td>
</tr>
<tr>
<td>Heat Rate (MMBtu/MW)</td>
<td>−0.648*** (0.133)</td>
<td>1.278*** (0.244)</td>
</tr>
<tr>
<td>Capacity (MW)</td>
<td>0.052*** (0.004)</td>
<td>0.985*** (0.046)</td>
</tr>
<tr>
<td>Constant</td>
<td>−55.418*** (4.109)</td>
<td>7.847*** (0.809)</td>
</tr>
</tbody>
</table>

Observations 3035 2819
\(R^2 \) 0.4778 0.9938

Note: Regression of calculated profits and log pollution from observed data on dynamic model states. The pollution regression also uses logs of the independent variables other than compliance and excludes generator-years with zero pollution. Standard errors are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Our adoption and exit model relies on profit predictions, and our counterfactuals rely on pollution predictions, both conditional on the dynamic state. Table 7 presents the results of our regressions of calculated profits and pollution on dynamic states.

The profit regression \(R^2 \) is relatively high at 0.4778, and most of the parameters have the expected sign. Profits are negatively correlated with U.S. state coal capacity (the sum of IPP and non-IPP coal capacity). They are positively correlated with the fuel price ratio, and this correlation is stronger when the U.S. state coal capacity is higher. Generators with higher heat rates—that burn coal less efficiently—have lower profits. However, one coefficient with a counterintuitive sign is the U.S. state coal fuel price. U.S. states with high coal fuel prices have higher coal generator profits, which likely captures other attributes of these U.S. states. Because this variable is fixed over time for any generator, we are less concerned that this will bias our dynamic parameter estimates.
Figure 5: Variation in Coal Capacity, Mean Profits, and Fuel Prices Over Time

Figure 5 shows that expected profits—as predicted with our regression of calculated profits on dynamic states—follow calculated actual profits well over time. The solid red line shows the gas to coal price ratio, which indicates that when gas prices dropped, coal generator profits also dropped substantially. The blue long-dashed line shows that coal capacity started falling approximately two years after the fall in gas prices, showing that exit takes time to occur.

The pollution regression, presented in column 2 of Table 7, has three differences relative to our profit regression. First, we include whether the generator is compliant with air toxics standards in the observation year, since the goal of compliance is to reduce pollution. Second, we log both pollution and the dependent variables other than compliance. Finally, we run this regression only for generator-years with non-zero pollution. This regression has a high R^2 of 0.9938, and all of the coefficients have the expected sign. Specifically, compliance and
coal fuel prices are associated with lower pollution. Higher coal capacity, generator heat
rate, and generator capacity are associated with higher pollution. Importantly, we observe a
positive baseline coefficient on gas prices relative to coal prices. This is consistent with our
priors since we would expect coal generators to run more when gas prices are higher. The
fact that this effect is decreasing as the coal capacity increases is also consistent with the
idea that this increased generation would be spread over more coal generators in this case.

5.3 Results of Adoption and Exit Model

Table 8: Structural Parameter Results

<table>
<thead>
<tr>
<th>Predicted Enforcement Probabilities:</th>
<th>Base Specification</th>
<th>Same Adoption Cost State vs. MATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability 2012</td>
<td>1.000*** (0.061)</td>
<td>0.999*** (0.080)</td>
</tr>
<tr>
<td>Probability 2013</td>
<td>0.699*** (0.120)</td>
<td>0.525*** (0.159)</td>
</tr>
<tr>
<td>Probability 2014</td>
<td>0.433*** (0.109)</td>
<td>0.306** (0.139)</td>
</tr>
<tr>
<td>Probability 2015</td>
<td>0.999*** (0.107)</td>
<td>0.997*** (0.103)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generator Costs:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adoption Cost (million $)</td>
<td>150.9** (75.1)</td>
<td>413.9*** (41.8)</td>
</tr>
<tr>
<td>Extra MATS Adoption Cost (million $)</td>
<td>398.7*** (72.1)</td>
<td>–</td>
</tr>
<tr>
<td>Exit Scrap Value (million $)</td>
<td>−196.4*** (37.4)</td>
<td>−196.8*** (42.6)</td>
</tr>
<tr>
<td>$1/\sigma$ (million $)</td>
<td>63.6*** (5.7)</td>
<td>63.4*** (6.5)</td>
</tr>
<tr>
<td>Simulated Log Likelihood</td>
<td>−628.34</td>
<td>−637.88</td>
</tr>
</tbody>
</table>

Note: Structural parameter estimates from nested-fixed point estimation. Standard
errors calculated via a parametric bootstrap are in parentheses. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 8 presents our structural results for two potential specifications. The first column
presents our base specification, where generators subject to MATS are allowed to have dif-
ferent adoption costs than generators subject to state standards. We find that adopting
air toxics abatement technology costs generators subject to state standards $151 million.
Adoption costs generators subject to MATS an additional $399 million, consistent with the
evidence that compliance with MATS may be more expensive due to more stringent standards and enforcement. These are substantial costs given that the mean generator profit during our sample period is approximately $13 million. We further estimate that generators need to pay $196 million in exit costs (negative scrap value) to shut down. While our estimated exit costs may include avoided fixed costs, these will also include environmental site remediation costs, e.g., from removing coal tailings.

Finally, our base specification estimates that in 2012 generators perceived that MATS was essentially certain to be enforced.31 This probability drops to 70% in 2013 and to 43% in 2014 as court challenges to MATS arise. Thus, we estimate that uncertainty in 2014 was very close to the maximum possible uncertainty, which would occur with a 50% enforcement probability. By 2015, however, generators realized that MATS was again very likely to be enforced in 2016, with the probability again rising to nearly one.

The second column of Table 8 requires abatement costs to be identical across generators subject to state standards and MATS. We find similar results, with adoption costs between U.S. state and MATS adoption costs from the first column. Though the probability estimates in 2013 and 2014 are smaller than in our baseline, the temporal patterns are quite similar, starting at approximately one in 2012, falling in 2013 and again in 2014, and then recovering to nearly one.32

5.4 Counterfactual Results

We use the structural parameter estimates from our base specification to simulate a series of counterfactuals. In each of the counterfactuals, we re-solve for the fixed point between generators’ expectations of the evolution of the market state and their adoption and exit decisions. Table 9 presents counterfactual discounted costs, profits, pollution, and exit and adoption outcomes for generators subject to MATS enforcement over the 30 years from 2012-

31This very high estimate may reflect the fact that we assume that U.S. state standard passage itself was certain in the announcement year. While these standards were essentially certain once announced, in some cases there was uncertainty surrounding their initial passage; see On-line Appendix A1.

32We also ran a model where adoption and exit costs are proportional to the generator’s capacity. This model fits the data less well, but recovered broadly similar estimates of the probability of enforcement over time.
Table 9: Counterfactual Results

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Estimated Mean Prob.: 0.7827</th>
<th>Same Mean Prob.:</th>
<th>Uncertainty Resolved in 2012 w/ Mean Prob.:</th>
<th>No Exit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adoption Costs (Bill. $)</td>
<td>7.30</td>
<td>6.99</td>
<td>6.53</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td>Exit Costs (Bill. $)</td>
<td>19.24</td>
<td>19.15</td>
<td>18.74</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Total Profits (Bill. $)</td>
<td>46.74</td>
<td>47.73</td>
<td>48.66</td>
<td>69.90</td>
<td></td>
</tr>
<tr>
<td>Pollution (Mill. lbs. SO$_2$)</td>
<td>867.52</td>
<td>881.30</td>
<td>946.50</td>
<td>740.91</td>
<td></td>
</tr>
</tbody>
</table>

Number of Generators:

<table>
<thead>
<tr>
<th>Year</th>
<th>Actual</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>191</td>
<td>191.0</td>
<td>191.0</td>
<td>191.0</td>
<td>191.0</td>
</tr>
<tr>
<td>2013</td>
<td>168</td>
<td>175.9</td>
<td>176.5</td>
<td>176.8</td>
<td>169.4</td>
</tr>
<tr>
<td>2014</td>
<td>149</td>
<td>163.0</td>
<td>163.1</td>
<td>163.6</td>
<td>151.6</td>
</tr>
<tr>
<td>2015</td>
<td>142</td>
<td>152.5</td>
<td>150.7</td>
<td>151.4</td>
<td>137.1</td>
</tr>
<tr>
<td>2016</td>
<td>121</td>
<td>129.5</td>
<td>131.0</td>
<td>135.0</td>
<td>111.0</td>
</tr>
<tr>
<td>Count Adopting</td>
<td>14</td>
<td>14.5</td>
<td>13.7</td>
<td>12.85</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Note: Column 1 reports observed exit and adoption decisions in the data. Column 2 reports predicted outcomes at model estimates. Column 3 replaces the estimated probabilities of 2016 MATS enforcement with the mean estimated probability across years. Column 4 calculates the expect outcomes with uncertainty completely resolved in 2012, with the mean estimated probability across years. Column 5 sets exit costs to 0. First four rows of results report the total discounted profits or costs from 2012 through 2041.

The first two columns of Table 9 present the observed exit and adoption outcomes for generators subject to MATS enforcement and the predicted outcomes using our model estimates. The model generally reproduces the data well. In particular it predicts that 14.2 generators would adopt abatement technology while 14 adopted in practice. We slightly underpredict the exit rate, which may be due to the estimation sample being different from our counterfactual sample. Turning to the other outcomes in column 2, our model predicts that generators will pay $7.3 billion in abatement technology costs, pay $19.2 billion in exit costs, and earn $46.7 billion in profits, discounted and summed over the 30 year period. Our estimates of generator abatement costs are similar to the EPA’s ex ante estimates of compliance costs, which were $9.6 billion (Environmental Protection Agency, 2011). Generators
will also produce 868 million discounted pounds of SO$_2$ pollution over this period.

The third column of Table 9 takes the average estimated probability (0.7827) from our model and applies it evenly in all years, including in the enforcement year, so that MATS is only actually enforced in 78.27% of simulation draws. This case is roughly similar to the baseline in column 2—as intended—but it allows us to compare ex ante to ex post uncertainty resolution.

Specifically, column 4 of Table 9 similarly assumes a 78.27% probability of MATS enforcement, but this is decided randomly at the moment that MATS is announced in 2012. This means that the level of the standard is identical to the counterfactual in column 3 in expectation, but that there is no uncertainty after announcement over whether MATS will be enforced. Thus the comparison between columns 3 and 4 provides a clear description of the costs of policy uncertainty.

With uncertainty resolved at announcement (ex ante), generator profits are $930 million higher than when the uncertainty is resolved in 2016 (ex post). Of this, $460 million comes from lower adoption costs, and $410 million comes from lower exit costs. The remainder of the savings accrue from generators timing their adoption and exit decisions to better take advantage of time-varying costs such as maintenance downtime that affect adoption and exit costs via the $\vec{\varepsilon}_{jt}$ term.

While resolving uncertainty in 2012 increases profits by 1.9%, it also increases the number of generators remaining in 2016 by 3.1%, and increases pollution by 7.4%. Resolving uncertainty ex ante will always allow generators to respond to cost shocks with full knowledge of future regulation, but the effect of this resolution on generator exit and pollution is less certain. In particular, if resolving uncertainty in favor of MATS enforcement has little effect on the probability of the generator’s exit relative to resolving uncertainty against MATS enforcement (i.e. the generator is on the concave portion of the exit decision CDF), then ex ante uncertainty resolution will reduce generator exit. The fact that we observe fewer generators exiting under ex ante uncertainty resolution suggests that there were many generators at the margin to exiting during this period.

To better understand the increase in pollution from ex ante uncertainty resolution, Figure 6 plots how 2017 SO$_2$ pollution varies with the natural gas to coal price ratio for both ex
ante and ex post uncertainty resolution. Most of the increase in pollution from ex ante uncertainty resolution occurs in states of the world with high natural gas to coal price ratios. Thus, this increase in pollution from ex ante resolution is coming primarily from increases in coal production that occur in states of the world with high gas prices.

Figure 6: Counterfactual Pollution Versus Realized Natural Gas Price

We use the EPA’s regulatory impact analysis total pollution benefits range and SO$_2$ pollution reduction from MATS to calculate the range of benefits from reducing SO$_2$ and related pollutants (Environmental Protection Agency, 2011). This calculation implies that a one pound reduction in SO$_2$ is worth between $12.41 and $33.83. This then implies that resolving uncertainty ex ante would result in damages of $809 million to $2.206 billion via the 65 million pound increase in pollution. In our context, this pollution increase is critical to understanding the welfare impacts of removing policy uncertainty, because the range of
pollution includes the profit gains to generators.

Finally, the last column of Table 9 keeps policy uncertainty the same as in our estimated model, but assumes that exit costs are fully subsidized. While this policy transfers exit costs to the government, it also reduces adoption costs, since some generators choose to exit rather than adopt pollution abatement technologies. This counterfactual results in 15.1% fewer generators in the market in 2016 and pollution drops 14.6% relative to the baseline in the second column. In tandem, generators’ discounted profits rise dramatically, by 49.6%. This column illustrates how achieving substantial reductions in coal capacity may be very costly to the government.

6 Conclusions and Further Discussion

This paper investigates the level and impact of policy uncertainty surrounding a major U.S. environmental regulation, the Mercury and Air Toxics Standard. To do this, we estimate generators’ perceptions of the probability that MATS will be enforced in 2016 using a dynamic oligopoly model of generator abatement technology adoption and exit behavior. These technology adoption and exit decisions are costly and irreversible, which means that recovering uncertainty from generators’ choices requires estimating a structural, dynamic model. Our model is identified by the difference in abatement technology adoption and exit decisions between coal electricity generators facing MATS and similar generators facing U.S. state air toxics standards.

In order to estimate our model, we also estimate ramping and operations and maintenance (O&M) costs using new approaches and identification arguments. Properly accounting for ramping costs is particularly important during our sample period since large declines in natural gas prices meant that coal generators switched to producing for shorter periods at maximum generation, thereby significantly increasing ramping costs.

We find that there was substantial uncertainty over whether MATS would be enforced, with generators’ perceived enforcement probability falling to 43% in 2014, with an average expected enforcement probability of approximately 80% over the 2012-2015 period. In order to understand the impact of this uncertainty on the costs and benefits of MATS, we
compare the observed pattern of uncertainty to a counterfactual environment where there is an approximately 80% chance at the moment of MATS announcement that MATS will be enforced, but this uncertainty is resolved instantly for all generators in 2012 with full commitment. We find that uncertainty increases the cost of complying with MATS by $930 billion, but increases pollution costs by $809 million to $2.206 billion.

In the context of MATS, policy uncertainty delayed abatement technology adoption and exit, increased compliance costs, and increased pollution. This occurred because policy uncertainty increased the private costs of compliance, the externalities from generators maintaining option value were positive, and the standard was eventually adopted. In other contexts, these factors may be reversed and the impact of policy uncertainty may differ.

Our approach has two key limitations. First, we model each generator as an independent optimizer, not accounting for linkages across generators owned by the same firm. In reality, firms may coordinate adoption and exit decisions across generators due to strategic considerations. We believe that these strategic considerations are limited in our context because the market for fossil-fuel electricity is relatively unconcentrated. In particular, we find a mean HHI of 2,321 (with a standard deviation of 1,832) across the states and years that we study. Second, we estimate ramping and O&M costs with the assumption that generators are price takers in hourly electricity markets, though we calculate profits without imposing this restriction.

Overall, our analysis has provided a new way to measure policy uncertainty in an environment with substantial irreversibility and pollution externalities. MATS also provides a suitable context to analyze policy uncertainty because the uncertainty surrounding air toxics standard enforcement was largely about the timing of eventual enforcement. This simplifies our model by allowing it to focus on estimating generators’ perceptions about this probability. Future research could better understand how uncertainty over the probability of policy enactment, the timing of that enactment, and the characteristics of the policy interact with policy uncertainty to affect economic outcomes.
References

A1 Evidence on U.S. State Air Toxics Standards

In the years before the EPA released the final MATS rule, a number of U.S. states drafted and passed their own rules and legislation in order to tackle mercury emissions. This section first documents how we determine U.S. state announcement and enforcement dates. Second, we show supporting evidence for our assumption that U.S. state standards were certain once announced. Finally, we explain why we believe that compliance with U.S. state-level standards may have been less onerous than compliance with MATS.\footnote{We thank Jacob Felton, Amy Mann, Rory Davis, Alison Ray, Joanne Morin, Bruce Monson, and Anne Jackson from state agencies in Connecticut, Delaware, Illinois, Maryland, Massachusetts, and Minnesota for assistance in understanding U.S. state regulations.}

A1.1 Implementation of U.S. State Standards

Connecticut’s Public Act 03-72 was signed into law by Governor John Rowland in June 2003, after gathering unanimous approval in both the state Senate and House (Jones, 2002). The law specified an enforcement date of July 1, 2008 (Connecticut General Assembly, 2003).

Delaware’s Department of Natural Resources and Environmental Control designed the “State Plan for the Control of Mercury Emission from EGUs.” This set of regulations came into effect on December 11, 2006 (Hughes, 2006). The initial enforcement date was May 1, 2009 (Office of the Registrar of Regulations, 2006).

Illinois’ Mercury Rule was proposed on January 5, 2006 by Governor Rod Blagojevich (Hawthorne and Tribune staff reporter, 2006). The regulation was formally adopted by the Illinois Pollution Control Board on December 21, 2006 (Gunn, 2006). The enforcement date was July 1, 2009 (Illinois Pollution Control Board, 2006).

In Maryland, a bill addressing mercury emissions was initially proposed in December 2005 (McIntire, 2005). After significant back-and-forth between Maryland’s Democratic legislature and its Republican administration, the Healthy Air Act was passed into law on April 6, 2006 (Zibel, 2006). The enforcement date was January 1, 2010 (Maryland Department of the...

Minnesota’s Mercury Emissions Reduction Act was signed into law on May 11, 2006. Firms had to comply with the new mercury emissions limitations by December 31, 2010 (Minnesota State Legislature, 2006).

In Wisconsin, the Department of Natural Resources proposed new mercury emission regulations pertaining to coal-fired utilities in September 2004 (Wisconsin Department of Natural Resources, n.d.). It later revisited these and updated them in 2008. The regulations were first enforced on April 16, 2016 (Legislative Reference Bureau Wisconsin, 2006).

As noted in Table A1, we specify the enforcement year as the first full year following the enforcement date. The one exception to this is Wisconsin, where we used the MATS enforcement year since MATS would have superseded the U.S. state policy.

In some cases, we assume that generators were subject to MATS instead of U.S. state enforcement, even though we found evidence of U.S. state policies. Florida developed a cap-and-trade policy based on CAMR rather than a technology standard (Congressional Research Service, 2007). Michigan’s regulation was a backstop to MATS and would only come into force if MATS was invalidated (Michigan Department of Environment, Great Lakes, and Energy, n.d.). New Hampshire’s policy was essentially voluntary (Congressional Research Service, 2007). North Carolina’s enforcement date was in 2018, substantially after MATS (Congressional Research Service, 2007). Finally, Pennsylvania’s standard was overturned by the state’s Supreme Court (Mustian and Demase, 2009).

A1.2 Enforcement Probabilities for U.S. State Standards

We assume that generators believed that U.S. state standards, once announced, would be enforced with certainty. In three U.S. states (Connecticut, Maryland, and Minnesota), the standard was passed as legislation. This reduces the potential for legal challenges as states have authority to pass legislation that regulates pollutants for sources located within their
borders. In other U.S. states, the standards were implemented via rule-making. In both cases, standards were generally developed in conjunction with industry groups. For instance, in Connecticut, the Senate chair of the environment committee commented that “[i]ndustry took a look at that battle and realized it was in their interest to collaborate and compromise” (Halloran, 2003). In Illinois, regulators included alternative emission standards at the behest of local industry, which limited emissions from power plants as a whole rather than from individual generating units (Illinois Pollution Control Board, 2006).

Overall, the U.S. state standard development process substantially decreased the potential for legal challenges. In particular, for the seven U.S. states that we define to have air toxics standards, we were able to uncover only one legal challenge: in Wisconsin, an industry group sued the Wisconsin Department of Natural Resources in May, 2008 (Pioneer Press, 2008). This challenge did not appear to be well-grounded since it was quickly dismissed in June, 2008 (Bauer, 2008)).

Despite the fact that U.S. state standards were essentially certain once passed, there was uncertainty surrounding their initial announcements. Maryland’s Healthy Air Act provides perhaps the most dramatic example of this uncertainty. Republican Governor Robert Erlich and the Democrat-controlled legislature drafted competing bills to address air pollution (Pelton, 2006). The eventual bill that the legislature passed was closer to the Democrats’ version. Erlich’s staff allegedly locked his office door at 4:30 on a Friday afternoon at the end of the legislative session to avoid him being presented with a set of bills that included the Healthy Air Act. Legislative aides slid the bill under the governor’s door. Maryland’s Attorney General determined that such action constituted presentment (Marimow and Mosk, 2006), and Erlich ultimately signed the bill (Zibel, 2006). Further illustrating that there was uncertainty surrounding the initial announcements, some U.S. states such as Georgia proposed mercury standards that were never put in place (Cash, 2006). We do not model this source of uncertainty, which may be why we find that generators subject to federal standards perceived the probability of MATS enforcement to be 1 in 2012.
A1.3 Compliance Costs for U.S. State Standards

While U.S. state standards regulated mercury similarly to MATS, there are at least three differences between these standards that are important for our analysis. All three of these differences implied that it would be less costly for generators to comply with U.S. state standards than MATS.

First, most U.S. state standards covered substantially fewer air toxics than MATS. Specifically, MATS regulated both mercury and air toxics, as required by *Sierra Club v. EPA*. In contrast, none of the U.S. state laws or regulations referenced reductions in air toxics other than mercury.

Second, U.S. state standards often had higher allowable emissions limits than MATS and specified alternative compliance approaches. Specifically, MATS specified a mercury emissions limit of between 0.0002 and 0.0004 lbs/GWh, depending on the type of coal (EPA, 2012). Connecticut specified a limit of 0.6 lbs/TBtu or a 90% mercury removal rate (Connecticut General Assembly, 2003). At the mean heat rate for generators subject to U.S. state regulation in Table 1, 0.6 lbs/TBtu corresponds to 0.00063 lbs/GWh. Delaware specified a limit of 1 lb/TBtu or an 80% reduction by 2010 (Office of the Registrar of Regulations, 2006). Illinois specified a limit of 0.0080 lbs/GWh or 90% reduction (Illinois Pollution Control Board, 2006). Maryland specified 80% reduction by 2010 (Maryland General Assembly, 2005). Massachusetts specified a limit of 0.0075 lbs/GWh or 85% reduction by 2012 (The Massachusetts Department of Environmental Protection, 2006). Minnesota specified a 70% reduction (Minnesota State Legislature, 2006). Wisconsin specified the minimum of a limit of 0.0080 lbs/GWh and a 90% reduction (Legislative Reference Bureau Wisconsin, 2006).

Finally, enforcement of U.S. state standards was less rigorous in some cases. For instance, in Connecticut, the regulator could deem generators that installed appropriate mercury reduction technologies to be compliant even if they did not comply with the emissions limits (Connecticut General Assembly, 2003). In Wisconsin, a generator could argue for an extension if compliance would lead to a disruption of electricity supply (Legislative Reference Bureau Wisconsin, 2006).
A2 Data Construction

We use our data to construct a number of variables, focusing first on the adoption of technologies that lead to compliance with air toxic standards. Although compliance is a central variable in our analysis, adoption of technologies that lead to compliance is not directly reported in our data.

Many of the U.S. states that implemented air toxics standards early on specified that they would determine compliance by using a CEMS to measure mercury emissions. However, this technology was ultimately not reliable enough to use. States ended up measuring compliance with a combination of technology reporting, periodic stack tests, and other emissions reporting. MATS—which was implemented after state air toxics standards—did not attempt to measure air toxics compliance through a mercury CEMS.

Because the most cost-effective technologies that abate both mercury and other air toxics also reduce SO₂, one important way that the EPA determines MATS compliance is via SO₂ emissions rates. In particular, the MATS final rule (77 FR 9304) specifies that generators can comply with MATS by having SO₂ emissions rates below 0.2 lbs/MMBtu.

For most generators, we observed a large decline in SO₂ emissions rates in a particular year before air toxics enforcement. For generators subject to MATS, these declines frequently reduced annual average emissions rates below 0.2 lbs/MMBtu, although in a number of cases the post-decline emissions rates were between 0.2 and 0.4, with some variation across years. In contrast, pre-decline rates were typically well above 1. For this reason we define a generator as having adopted abatement technology in the first year when (i) its 3-year forward moving average SO₂ emissions rate falls below 0.4, or (ii) its annual emissions rate falls by 40% or more.34

We use a similar method to determine compliance with U.S. state air toxics standards. The only difference is that we found that the post-decline emissions rates were typically below 0.7 but often above 0.4 lbs/MMBtu. Thus, we used a cutoff of 0.7 in our definition of compliance with state air toxics standards. This is consistent with the evidence in Section A1.3.

\[\text{\footnotesize{34In a small number of cases, we observe generators operating past the MATS enforcement date that did not meet this definition. We define these generators as having adopted abatement technology before our sample begins, to effectively remove their adoption choices from our data.}}\]
that state air toxics standards may be less stringent than MATS.

Exit decisions are also central to our model because generators may respond to air toxics standards by exiting the market. For our generator-year data set, we define a generator to have exited after the last year in which we observe it generating with coal in the CEMS data.\footnote{Thus conversions from coal to natural gas—as analyzed by Scott (2021) in response to MATS—will appear as exits in our data.} For our generator-hour data set, we define a generator to have exited after the last hour in which we observe it generating, unless there are fewer than 200 hours with zero generation at the end of its appearance in the CEMS data, in which case we simply use the end of its CEMS appearance as the exit hour.

Beyond adoption and exit, we also need to define generator fixed characteristics, specifically, minimum and maximum generation levels conditional on generating, capacity, and heat rate. We define a generator’s maximum generation level as the 95th percentile of its observed hourly generation conditional on operating in the CEMS data. We also use this as the generator’s capacity.\footnote{We choose the 95th percentile because while generators can generate above listed capacity, this extra generation is extremely costly in the long-run.} We define a generator’s minimum generation level as its modal generation level between the 5th and 60th percentile of capacity. We then bin hours with positive generation into minimum and maximum generation levels based on whichever level is nearer.

Finally, we calculate the heat rate of each generator at each hour using its heat input divided by its electricity production. Our analysis uses a time-invariant measure of the heat rate for each generator. Because generators operate most efficiently when generating near full capacity, we define each generator’s time-invariant heat rate as the mean hourly heat rate across hours in the maximum generation bin.

\section*{A3 Equilibrium Computation and Estimation}

We estimate our model and conduct counterfactuals by solving for equilibria across candidate parameter vectors, U.S. states, and belief years. We recover the equilibrium as the fixed point of an algorithm that iterates between solving individual optimization decisions and estimating
market evolution regressions that are generated by these decisions.

This appendix begins by detailing our model’s state space and explaining generators’
dynamic optimization. We then specify market evolution regressions and outline our fixed
point solution algorithm. Finally, we describe our bootstrap process for calculating standard
errors and outline our counterfactual calculations.

A3.1 State Space

The state space for any generator consists of three continuous states, which together form Ω—
the ratio of natural gas to coal fuel price, coal capacity relative to the 95th percentile of hourly
load, and the capacity-weighted share of IPP coal generators that have adopted abatement
technology; discrete states—years to enforcement, belief year, and technology adoption; and
the generator’s fixed state—capacity, heat rate, and and fixed market characteristics. We
discretize the three continuous state variables into 1000 bins, with 10 grid points for each
state variable. We choose these grid points to be evenly spaced between 0 and maximum
levels that depend on the variable and U.S. state. For the fuel price ratio, this maximum is
120% of the maximum value observed in the data. For coal capacity, this maximum is the
higher of 0.1 and 120% of the maximum value observed in the data. For the adoption share,
this maximum is 1.

Units subject to MATS enforcement have discrete states \{τ, τ', Tech\} based on the belief
year \(τ \in \{0, 1, 2, 3, 4\}\), years to enforcement \(τ' \in \{0, 1, 2, 3, 4\}\) and the unit’s technological
adoption status \(Tech \in \{0, 1\}\). There are 21 total states. There is one state for \(τ = 0\)
as \(Tech\) is not relevant in this case. There are two states for \(τ = 1\) where \(τ' = 1\) and
\(Tech \in \{0, 1\}\), four states for \(τ = 2\) where \(τ' \in \{1, 2\}\) and \(Tech \in \{0, 1\}\), six states for \(τ = 3\)
where \(τ' \in \{1, 2, 3\}\) and \(Tech \in \{0, 1\}\), and eight states for \(τ = 4\) where \(τ' \in \{1, 2, 3, 4\}\)
and \(Tech \in \{0, 1\}\). At any moment in time, a generator has a given belief year, and so only
perceives that a subset of these discrete states are relevant.

Units subject to U.S. state enforcement are certain about the standard being implemented
once it is announced. Thus, belief year \(τ\) is not relevant for these U.S. states. For these units,
there are \(1 + 2 \times (\text{Enforcement Year} - \text{Announced Year})\) discrete states.
A3.2 Generators’ Annual Dynamic Optimization

We solve for generators’ optimal dynamic adoption and exit decisions using Bellman equations, as exposited in Section 3.2. For each generator, discrete state, bin of the continuous state, and adoption/exit/continue choice, we simulate the expected future value by taking the mean over the values resulting from each of 200 co-prime Halton draw vectors. We transform each vector into normal residuals using the AR(1) regression mean squared errors and calculate the value function of each resulting state. Since these resulting states will potentially lie between grid points, we approximate their values by linearly interpolating across the nearest two grid points in each of the three dimensions (resulting in an interpolation over 8 grid points).

When $\tau' > 0$, the distribution of future values depends on whether the generator chooses to adopt or continue. Specifically, in making the choice to adopt new abatement technology, generators recognize that the adoption share will include one additional adopter next period. In the choice to continue instead of adopting, this adopter will not be present. For generators that have already adopted, their choice to continue does not affect the adoption share evolution. They therefore rely upon coefficients from three different adoption share regressions in their choice-specific value function calculations, as we discuss below. When $\tau' = 0$, future adoption share is not relevant.

A3.3 Market Evolution Regressions

As discussed in Section 4.3, market evolution is governed by three continuous states that evolve according to AR(1) processes. We assume that the residuals of these state evolution regressions are $i.i.d.$, allowing us to simulate them with co-prime Halton vectors as discussed above. We discuss each of these evolutions in turn.

First, since the fuel price ratio evolves exogenously to the model, we estimate a simple AR(1) regression of fuel price ratio on its lag and a constant term. Because we are identifying this regression from data—rather than model simulations—we estimate one regression across our entire sample.

Second, coal capacity is the sum of the non-IPP and IPP coal capacity (relative to load).
We specify an exogenous AR(1) regression for non-IPP coal capacity, where it depends on its lag, the lagged fuel price ratio, the interaction between these two variables, and a constant. Similar to the fuel price ratio, we estimate one non-IPP coal capacity regression across our entire sample. The IPP coal capacity evolves endogenously in the model. For each U.S. state and year, we simulate the next year’s IPP coal capacity by simulating generators’ decisions given their optimizing behavior as calculated from the Bellman equations. Generators only value knowing future coal capacity in the case where they do not exit. Our simulations approximate this endogeneity of future market structure by randomly selecting one generator to remain active, regardless of its simulated strategy. To simulate the overall coal capacity, we add a draw of IPP coal capacity (derived from the model) to a draw of non-IPP coal capacity (derived from our non-IPP regression). When outside the enforcement window, coal capacity depends on its lag, the lagged fuel price ratio, their interaction, and a constant. When inside the enforcement window, we add the lagged adoption share and years to air toxics standard enforcement as additional regressors.

Third, the capacity-weighted share of IPP coal generators that have adopted abatement technology also evolves endogenously to the model. During the enforcement window, we model the share that has adopted as being a function of its lag, the lagged fuel price ratio, the interaction, the years to air toxics standard enforcement, and a constant. As noted above, generators recognize that their choices will affect this evolution. Accordingly, we estimate three versions of this regression, corresponding to the choices of adoption, continue (when not yet adopted), and continue (when previously adopted). As with IPP coal capacity, we approximate this effect in the first two cases by randomly selecting one generator that had not already adopted and requiring that it adopt or not. When the generator has already adopted, we do not need to randomly select the actions of any generator.

Because we run the coal capacity and adoption share regressions on simulated data, we choose the number of observations and values of the regressors. The number of observations is the product of the number of simulation draws and simulation years. We start with 1000 simulation draws and 14 simulation years, increasing the number of simulation draws in case of convergence difficulties. We start the regressors at the values in the first year of
our sample, 2006. For the coal capacity regression, we use as the dependent variable the expectation of the IPP coal capacity in the next year—given optimizing generator policies—plus a simulated draw from the (exogenous) non-IPP coal capacity process. Similarly, for the adoption regression, the dependent variable is the expectation of the adoption share in the next year, again given optimizing policies. We use expectations rather than simulation draws in order to reduce the variance of our dependent variables.

In contrast, to construct the following year’s regressors, we need to simulate choices given optimizing generator adoption and exit decisions. We do this using a simulation draw from each AR(1) process. We deviate from this updating process in one case in order to obtain sufficient variation in the adoption share variable. Specifically, in the year of standard announcement, we start half of the simulations with each generator having adopted with 0.25 probability and the other half with each generator having adopted with 0.75 probability.

We let the probability of enforcement at the end of the final year before enforcement be equal to P_{τ}. We therefore simulate the realization of enforcement as a correlated shock to all units in the state.

\subsection*{A3.4 Bootstrapped Standard Errors}

In order to calculate standard errors for our parameter estimates, we conduct a parametric bootstrap. This involves simulating 25 data sets created from the equilibrium evaluated at the parameter estimates and re-estimating our model on these data sets.

We solve the equilibrium following the same nested fixed point approach as in our estimation. For the same U.S. states and years as our base data, we then simulate generator adoption and exit and fuel price ratio and non-IPP coal capacity evolution. We assume that generators make decisions in each year to enforcement, τ', given contemporaneous beliefs, τ, so that $\tau = \tau'$.

In our simulations, we assume that the exogenous processes—fuel price ratio and non-IPP coal capacity—evolve according to the AR(1) processes estimated from the observed data. We begin our simulations with these variables set to their actual 2006 values.\footnote{Florida and Michigan do not report any IPP coal generators until 2008. We therefore start our bootstrapped data sets in 2008 for these states.}
subsequent year, we update these variables by drawing from their evolution distributions.

We also begin the endogenous market state variables—IPP coal capacity and adoption share—at their observed 2006 values. We simulate the evolutions of these variables by aggregating simulated draws from generators’ equilibrium strategies.

For convenience, we modify our bootstrap sample from our analysis data in two ways. First, while a few IPP coal generators enter the sample after 2006, we assume that they are present starting in 2006. Second, we limit the realizations of the exogenous processes to not go below 0.01.

A3.5 Counterfactual Calculations

We calculate counterfactual outcomes using a similar approach to how we simulate data for our bootstrap. This involves solving the equilibrium and then simulating data. Our approach differs in four ways. First, in each counterfactual, we use different values of the structural parameters. Second, we limit our analysis to only those generators that are subject to MATS enforcement. Third, our counterfactual analysis covers a different time period than the bootstrap. In particular, we begin our analyses in 2012 when MATS was announced and simulate forward 30 years, in order to understand the long-run effects of alternative policy environments. Finally, in order to understand the effects of counterfactual policy environments on pollution outcomes, we calculate the expected pollution outcomes for each of our counterfactual simulations, using our pollution surface introduced in Section 4.2.

A4 Extra Tables and Figures
Table A1: Announcement and Enforcement Years for U.S. State Standards

<table>
<thead>
<tr>
<th>State</th>
<th>Announced</th>
<th>Enforced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td>2003</td>
<td>2009</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>2004</td>
<td>2009</td>
</tr>
<tr>
<td>Maryland</td>
<td>2006</td>
<td>2011</td>
</tr>
<tr>
<td>Illinois</td>
<td>2006</td>
<td>2010</td>
</tr>
<tr>
<td>Delaware</td>
<td>2006</td>
<td>2010</td>
</tr>
<tr>
<td>Minnesota</td>
<td>2006</td>
<td>2011</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>2008</td>
<td>2016</td>
</tr>
</tbody>
</table>

Note: Announcement and enforcement years are based on sources discussed in Appendix A1.

Figure A1: Distribution of Consecutive Hours at Maximum Generation

Note: Authors’ calculations based on hourly analysis sample of IPP coal generators. Each observation is one observed ramp to maximum generation. The green line displays a kernel density of the number of hours at maximum capacity for each ramp to maximum capacity in 2008. The orange line displays the same information for 2016. Both densities are truncated at 30 hours per ramp.
Figure A2: Distribution of Calculated Profits

Note: Histogram of annual profits as calculated with Equation 7 and estimated ramping and O&M costs.
Appendix References

Maryland Department of the Environment, “The Maryland Healthy Air Act.”

Michigan Department of Environment, Great Lakes, and Energy, “Mercury (Hg),” Online.

Wisconsin Department of Natural Resources, “Air Toxics and Mercury.”