Exchange Rates, Prices, and Trade: Theory and Microdata

Brent Neiman, Professor, University of Chicago
Booth School of Business

Dynamic Trade Models with PPP Failures

Sunday, August 30, 2020
Introduction

- International macro models typically have 2-countries without serious “geography”, limited I/O structure

- Trade models typically static, no capital and ignore the future

- Often, this is fine. But what if need dynamic and realistic sector-country linkages? For example, what if wish to study distribution of trade imbalances?

- In what follows, much of the “geography” embedded via PPP failures.
 - Based on Eaton, Kortum, Neiman, Romalis (AER 2016): Global Trade Collapse
 - Based on Eaton, Kortum, and Neiman (JEDC 2016): Obstfeld-Rogoff’s 6 puzzles
 - But will highlight shortcomings and other recent papers/developments at the end
Agenda

- Simplified Model
 - Less Sectors
 - No Intermediates
 - No I/O Heterogeneity

 (See Note and Code.)

- Key Equations (Fast!)

- Application (EKNR) to Global Trade Collapse of 2008

- Shortcomings / Related Literature
Simplified Economy: Technology and Preferences

- Multiple countries $n = 1, ..., N$.

- Good S ("Services") is a CES bundle of varieties $z \in [0, 1]$. Nontraded and used for consumption.

- Good D ("Durables") is a CES bundle of varieties $z \in [0, 1]$. Traded and used for investment.

- Country n may import durable variety from i, subject to $d_{ni,t}$.

- Complete markets, no uncertainty, perfect competition
Simplified Economy: Technology and Preferences

- Production in country \(n \) of variety \(z \) in sector \(j \in \{D, S\} \):
 \[
y_{j,n,t}(z) = a_{j,n,t}(z) B \left(L_{j,n,t}(z) \right)^{\beta_L} \left(K_{j,n,t}(z) \right)^{\beta_K}
 \]

- Efficiencies \(a_{j,n,t}(z) \) drawn from:
 \[
 \Pr \left[a_{j,n,t}(z) \leq a \right] = \exp \left(- \left(\frac{a}{\gamma A_{j,n,t}} \right)^{-\theta} \right)
 \]

- Factors of production are constrained by:
 \[
 K_{n,t} = \int_0^1 K_{n,t}^D(z) dz + \int_0^1 K_{n,t}^S(z) dz
 \]
 \[
 L_{n,t} = \int_0^1 L_{n,t}^D(z) dz + \int_0^1 L_{n,t}^S(z) dz
 \]
Simplified Economy: Technology and Preferences

- Capital accumulation:

\[K_{n,t+1} = \chi_{n,t} \left(\frac{I_{n,t}}{K_{n,t}} \right)^\alpha K_{n,t} + (1 - \delta)K_{nt} \]

- Investment:

\[I_{n,t} = \left(\int_0^1 \chi_{n,t}^D(z)^{(\sigma-1)/\sigma} \, dz \right)^{\sigma/(\sigma-1)}, \]

where \(\chi_{n,t}^D(z) \) is absorption in \(n \) of variety \(z \) of good \(D \).
Demand shocks allow for changes in relative spending:

\[U_n = \sum_{t=0}^{\infty} \rho^t \phi_{n,t} \ln C_{n,t} \]

Consumption:

\[C_{n,t} = \left(\int_0^1 x_{n,t}^S(z)^{(\sigma-1)/\sigma} \, dz \right)^{\sigma/(\sigma-1)} \]

where \(x_{n,t}^S(z) = y_{n,t}^S(z) \) is absorption in \(n \) on vty \(z \) of good \(S \).
Simplified Economy: Planner’s Problem

- We solve Planner’s problem. Planner uses weights ω_n.

- We impose a restriction so demand has no global component:

$$\sum_{n=1}^{N} \omega_n \phi_{n,t} = 1$$

- We interpret shadow prices as competitive prices. For example, we replace $\lambda_{n,t}^K$ with $r_{n,t}$.
Simplified Economy: First Order Conditions

► Price of Consumption Good:

\[p_{n,t}^S = \left(\frac{(w_{n,t})^{\beta_L}}{A_{n,t}^S} \right) \left(\frac{(r_{n,t})^{\beta_K}}{K_{n,t}^j} \right) \]

► Capital Rental Rates:

\[r_{n,t} = p_{n,t}^j \beta_K \frac{y_{n,t}^j}{K_{n,t}^j} \]

► Labor Rental Rates:

\[w_{n,t} = p_{n,t}^j \beta_L \frac{y_{n,t}^j}{L_{n,t}^j} \]
Simplified Economy: First Order Conditions

- Price of Investment Good:

\[p_{n,t}^D = \left[\sum_{i=1}^{N} \left(\frac{(w_{i,t})^{\beta_L} (r_{i,t})^{\beta_K} d_{ni,t}}{A_{i,t}^D} \right)^{-\theta} \right]^{-1/\theta} \]

- Bilateral Trade Shares:

\[\pi_{ni,t} = \left(\frac{(w_{i,t})^{\beta_L} (r_{i,t})^{\beta_K} d_{ni,t}}{p_{n,t}^D A_{i,t}^D} \right)^{-\theta} \]
Simplified Economy: Consumption

- Consumption Spending and Production:

\[X_{n,t}^S = Y_{n,t}^S = p_{n,t}^S C_{n,t} = \omega_n \phi_{n,t} \]

- Numeraire is world consumption expenditure:

\[\sum_{n=1}^{\mathcal{N}} Y_{n,t}^S = \sum_{n=1}^{\mathcal{N}} X_{n,t}^S = \sum_{n=1}^{\mathcal{N}} p_{n,t}^S C_{n,t} = \sum_{n=1}^{\mathcal{N}} \omega_n \phi_{n,t} = 1 \]
Simplified Economy: Investment Euler

- Investment Euler \((X_{n,t}^D = p_{n,t}^D I_{n,t}) \):

\[
\frac{p_{n,t}^D}{\alpha \chi_{n,t}} \left(\frac{X_{n,t}^D}{p_{n,t}^D K_{n,t}} \right)^{1-\alpha} = \rho r_{n,t+1} + \rho \frac{p_{n,t+1}^D}{\alpha \chi_{n,t+1}} \left(\frac{X_{n,t+1}^D}{p_{n,t+1}^D K_{n,t+1}} \right)^{1-\alpha} \times \\
\left[\chi_{n,t+1} (1 - \alpha) \left(\frac{X_{n,t+1}^D}{p_{n,t+1}^D K_{n,t+1}} \right)^{\alpha} + (1 - \delta) \right]
\]

- Setting \(\alpha = 1 \) and rearrange to get more standard form:

\[
\frac{p_{n,t}^D}{\chi_{n,t}} = \rho \frac{\phi_{n,t+1}}{\phi_{n,t}} \frac{U'(C_{n,t+1})}{U'(C_{n,t})} \left[\frac{p_{n,t+1}^D}{p_{n,t}^S} \frac{1}{p_{n,t+1}/p_{n,t}^S} (1 - \delta) + \frac{r_{n,t+1}}{p_{n,t+1}/p_{n,t}^S} \right]
\]
Simplified Economy: Production, GDP, Factor Payments

- Durable production $Y_{n,t}^D$ must be globally absorbed $X_{n,t}^D$:

$$Y_{i,t}^D = \sum_{n=1}^{N} \pi_{ni,t} X_{n,t}^D$$

- GDP:

$$Y_{n,t} = Y_{n,t}^D + Y_{n,t}^S$$
Non-Simplified Model Used in Applications

- Many sectors that contribute differentially to investment/consumption
- Production combines these many sectors as intermediates.
- Shares are country-sector specific: $\beta_{ik}, \beta_{ij}, \text{ and } \beta_{jl}$, taken from OECD
- Use quarterly data in levels on:
 1. Sectoral production $Y_{n,t}$
 2. Bilateral trade shares in each sector $\pi_{ni,t}$
 3. Services deficits $D_{n,t}$
- Use quarterly data in changes on:
 1. Sectoral prices $\hat{p}_{n,t}$
 2. Growth in labor supply $\hat{l}_{ni,t}$
Step 1: Find \hat{K}_{tE+1}
Backing Out Shocks

Step 2: Find \(\{ \hat{K}_t \} \)

\[\hat{K} \]

Data Available

Shocks Not Changing (Assumption)

\(t^E \)

1.0
What To Do Now? Lots of Options

- What do shocks like like over time? Sectors? Countries?
- Counterfactuals from the past?
- Guesses about the future?
EKNR: Backed-Out Shock Values

<table>
<thead>
<tr>
<th></th>
<th>Prior Period</th>
<th>Global Recession</th>
<th>Recovery Period</th>
<th>Prior Period</th>
<th>Global Recession</th>
<th>Recovery Period</th>
<th>Prior Period</th>
<th>Global Recession</th>
<th>Recovery Period</th>
<th>(\Delta D_i^{S})</th>
<th>Recovery Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>0.99</td>
<td>0.99</td>
<td>0.95</td>
<td>0.98</td>
<td>0.97</td>
<td>0.97</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>1.00</td>
<td>1.06</td>
<td>0.94</td>
<td>0.99</td>
<td>1.04</td>
<td>0.99</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>0.99</td>
<td>1.03</td>
<td>0.94</td>
<td>1.00</td>
<td>1.00</td>
<td>0.93</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>1.02</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>0.97</td>
<td>0.98</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>0.98</td>
<td>0.99</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>0.96</td>
<td>1.10</td>
<td>0.94</td>
<td>0.96</td>
<td>1.04</td>
<td>0.97</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>0.99</td>
<td>1.00</td>
<td>0.98</td>
<td>0.99</td>
<td>0.97</td>
<td>0.97</td>
<td>0.00</td>
<td>-0.02</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>1.02</td>
<td>0.93</td>
<td>0.95</td>
<td>0.97</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>-0.04</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>0.98</td>
<td>0.94</td>
<td>0.88</td>
<td>0.99</td>
<td>0.96</td>
<td>0.99</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1.00</td>
<td>0.99</td>
<td>0.90</td>
<td>0.98</td>
<td>0.87</td>
<td>0.96</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>0.99</td>
<td>1.00</td>
<td>0.94</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest of World</td>
<td>0.99</td>
<td>0.99</td>
<td>0.96</td>
<td>0.98</td>
<td>0.98</td>
<td>0.97</td>
<td>-0.01</td>
<td>0.06</td>
<td>-0.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EKNR: Backed-Out Shock Values

<table>
<thead>
<tr>
<th>Country</th>
<th>\hat{A}_i^C Prior Recession</th>
<th>\hat{A}_i^D Prior Recession</th>
<th>\hat{A}_i^N Prior Recession</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>1.00</td>
<td>1.05</td>
<td>1.02</td>
</tr>
<tr>
<td>Canada</td>
<td>0.99</td>
<td>0.78</td>
<td>1.08</td>
</tr>
<tr>
<td>China</td>
<td>1.04</td>
<td>0.83</td>
<td>1.07</td>
</tr>
<tr>
<td>France</td>
<td>0.97</td>
<td>0.98</td>
<td>1.03</td>
</tr>
<tr>
<td>Germany</td>
<td>1.00</td>
<td>0.95</td>
<td>1.04</td>
</tr>
<tr>
<td>India</td>
<td>1.03</td>
<td>0.93</td>
<td>1.08</td>
</tr>
<tr>
<td>Italy</td>
<td>1.00</td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td>Japan</td>
<td>1.01</td>
<td>0.89</td>
<td>0.96</td>
</tr>
<tr>
<td>Mexico</td>
<td>1.02</td>
<td>0.96</td>
<td>1.05</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.99</td>
<td>0.90</td>
<td>1.07</td>
</tr>
<tr>
<td>United States</td>
<td>0.99</td>
<td>0.98</td>
<td>1.04</td>
</tr>
<tr>
<td>Rest of World</td>
<td>1.00</td>
<td>0.90</td>
<td>1.06</td>
</tr>
<tr>
<td>Country</td>
<td>$\hat{\chi}_i^C$</td>
<td>$\hat{\chi}_i^D$</td>
<td>$\hat{\phi}_i$</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>World</td>
<td>1.01</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Canada</td>
<td>1.04</td>
<td>1.10</td>
<td>1.03</td>
</tr>
<tr>
<td>China</td>
<td>1.08</td>
<td>1.24</td>
<td>1.13</td>
</tr>
<tr>
<td>France</td>
<td>1.06</td>
<td>0.90</td>
<td>1.01</td>
</tr>
<tr>
<td>Germany</td>
<td>0.98</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>India</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>Italy</td>
<td>1.03</td>
<td>0.94</td>
<td>1.01</td>
</tr>
<tr>
<td>Japan</td>
<td>0.93</td>
<td>1.23</td>
<td>0.93</td>
</tr>
<tr>
<td>Mexico</td>
<td>1.01</td>
<td>0.75</td>
<td>1.00</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1.02</td>
<td>0.85</td>
<td>0.98</td>
</tr>
<tr>
<td>United States</td>
<td>0.97</td>
<td>0.97</td>
<td>0.98</td>
</tr>
<tr>
<td>Rest of World</td>
<td>1.03</td>
<td>0.91</td>
<td>1.04</td>
</tr>
</tbody>
</table>
EKNR: Country Trade Counterfactuals

Trade Friction Shocks

Inv. Efficiency in Durables Shocks

Inv. Efficiency in Structures Shocks

Demand Shocks
EKNR: Country GDP Counterfactuals

Trade Friction Shocks

Inv. Efficiency in Durables Shocks

Inv. Efficiency in Structures Shocks

Demand Shocks
EKNR: Impact of Non-DEU Shocks

- **Imports**
- **Exports**
- **Production**
- **GDP**
Shortcomings and Related Literature

- **Shortcoming:** Net foreign asset position changes unrealistically
 For improvement, see: Reyes-Heroles (2016); For calibration: use GCAP?

- **Shortcoming:** CES substitution patterns
 For improvement, see: Baqaee and Farhi (2019 and others)

- **Shortcoming:** Computational efficiency
 For improvement, see: Ravikumar, Spossi, Santacreu (JIE 2019)

- **Shortcoming:** Exogenous Labor
 For improvement, see: Caliendo, Dvorkin, and Parro (ECMA 2019)

- **Shortcoming:** No nominal rigidity/currency and no asymmetry (DCP)
 For improvement, see: Nothing yet

- Dynamics and quantitative trade more generally: See great work by George Alessandria, Kim Ruhl, Esteban Rossi-Hansberg, Mike Waugh, and others