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1 Introduction

A researcher has a conjecture for a new theoretical result. If the conjecture turns out to be

true, and if she can provide a proof, she can write a paper with her result. If the conjecture

turns out to be incorrect, and she produces a counterexample, she can write a different paper

with the “modified conjecture,” or perhaps a (shorter) paper with the counterexample. She

can divide her time between trying to come up with a proof and trying to come up with a

counterexample; but she can also use part of her research funds to hire a research assistant to

work on a counterexample while she works on the proof, or viceversa. This way, a paper may be

produced faster; but research funds have to be spent, and in the end one and only one of the two

endeavours can succeed.

Alternatively, a lab is conducting clinical research on two different new treatments for a dis-

ease. One of the treatments is based on the hypothesis that the cause of the disease is a virus,

while the other, bacteria. The lab director can have her staff experiment on either treatment; or

she can hire additional researchers, and have two teams work side by side on the separate treat-

ments. This way, the successful treatment may be identified faster; but the additional researchers

must be compensated for their work, and ultimately only one team can be successful.

Similarly, a professional-services firm, such as a consultancy or a legal partnership, employs

experts to serve their clients. The cases they handle may involve expertise in, say, regulation or

finance for a consultancy, and taxes or litigation for a legal partnership. The manager of the firm

is uncertain about the clientele. She can hire an expert on one of these areas, or hire multiple

experts, one in each field. At the cost of a higher payroll, the firm can be better equipped to

handle cases and get more data on their clients’ profiles. But experts that remain idle during any

period must nonetheless be paid a wage.

This paper studies such experimentation problems, where a decision maker faces two alter-

natives (research projects to work on, treatments to try, experts to hire) and two possible, ex-ante

unobserved states of nature (truth value of a research conjecture, of a medical hypothesis, client

profiles). Successes arrive over time according to a known Poisson process, but correspond to

one and only one of these alternatives according to the unobserved state of nature. The alter-

natives are thus negatively correlated: A success from one is conclusive evidence that the other

alternative cannot produce value. Over any time interval, the decision maker can choose to not

experiment, to experiment on a single alternative, or to experiment on both alternatives at once.

She bears a (constant) flow cost for each alternative chosen, and she only observes successes for

those alternatives selected. Therefore, by experimenting on a single alternative, she cannot distin-

guish between the arrival of a success for the other alternative and failure of arrival altogether;

she must experiment on both simultaneously to tell these two events apart. Nonetheless, the deci-

sion maker can make inferences about any alternative from the outcomes of the other alternative,

due to their correlation.

Imagine that the decision maker can only experiment on at most one project at a time. If the

cost of experimentation is too high, and if she is sufficiently impatient (alternatively, if the arrival
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rates of successes are too low), the decision maker starts on the project that she deems most

promising. As long as it fails, she gradually loses confidence in the chosen alternative, in favor

of the neglected one: Bad news about a project is good news about the other project. Eventually,

however, the decision maker gives up altogether: Before her posterior can reach a point where

it would be optimal to switch projects, it reaches a point of uncertainty at which no further

experimentation is worthwhile. Intuitively, the continued failure of her initially favored project

has left her unsure — the odds have not been turned far enough —, and further experimentation

is simply not worth her while.

The basic results when simultaneous experimentation is allowed are summarized as follows:

(a) If the costs of the projects are low and/or the arrival rates are sufficiently high relative to

the discount rate, the decision maker begins with both projects at once when her prior is diffuse.

If, instead, her prior assesses that one project is sufficiently likely to be the fruitful one, she begins

with that project alone. If enough time passes and she meets with no success, she takes on both

projects simultaneously once she becomes sufficiently unsure about the state; she never abandons

one project for the other.

(b) But if the costs of the projects are high, and if the discount rate is high (or the arrival

rate is low), she either does no research at all — if her prior is sufficiently diffuse — or she

works on one project only — if the prior that said project is the fruitful project is high enough

—, abandoning research if, after a while, she does not meet with success.

(c) Imagine the researcher, if she conducts both projects at once and success is achieved,

cannot tell which project was responsible for the success. The manager of the consulting firm

may observe whether a team of experts collectively meets their clients’ needs, but not exactly

how much each of the experts contributes individually. For low costs and high discount rate, the

decision maker starts with both projects if her prior is diffuse. Now, however, if she starts on a

singleton, she sticks to the singleton for longer. If the costs are too high relative to the arrival

rate, or if the discount rate is sufficiently low, she only experiments on singletons: Information

can only come from singletons, which are cheaper than simultaneous experimentation.

(d) Of the two basic alternatives, one must eventually succeed; in this sense, they are “collec-

tively safe.” Sometimes, a researcher may also have other, separate projects to work on, projects

that may fail. The decision maker postpones starting on these collectively-safe projects in favor

of a riskier one if she is sufficiently optimistic about this third project, less optimism required the

more uncertainty there is about the two original projects.

The decision maker experiments simultaneously on both projects when she is sufficiently

uncertain about the state. In this sense, there is “more experimentation” for mid-range beliefs,

when information is the most valuable. This stands in (apparent) contrast with Moscarini and

Smith (2001), who find that experimentation “accelerates” when the decision maker is close to

being confident enough to make a choice.

Moscarini and Smith (2001) assume that the cost of “experimentation” — in their model,

buying signals and delaying final, irreversible choices — is strictly increasing and strictly convex.
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Moreover, observations and posteriors obey a diffusion process, so they always change gradually

over time. Thus, experimentation is more costly when it takes longer for the posterior to reach

decision thresholds. The same is true in the present paper: Experimentation is more costly when

it has the smallest impact on beliefs. However, the flow cost of choosing each alternative is

constant, and observing an arrival from a Poisson process produces jumps in the posterior rather

than gradual changes; thus, experimentation here has the smallest impact on beliefs when the

posterior is already close to the extremes.

While Moscarini and Smith (2001) represent experimentation as a type of Wald sequential

hypothesis-testing problem, I follow the more traditional literature and represent experimenta-

tion as a bandit problem — here, a Poisson bandit with correlated arms.1 Not being restricted

to choosing at most a single arm at a time, it is in fact a multi-choice bandit problem. A special

class of such problems is studied in Bergemann and Välimäki (2001). A decision maker faces

countably many arms, and can choose up to some fixed number of them at a time, at no addi-

tional cost. A generalization of the Gittins index2 applies if the arms are independent, ex-ante

identical, and there are (countably) infinitely many of them; however, Bergemann and Välimäki

(2001) show by example that this solution fails if there are only finitely many arms.

In Francetich and Kreps (2014), we study the following variation of the present multi-choice

bandit problem. A finite set X of alternatives, or “tools,” is given. Each time period t = 0, 1, . . .,

a decision maker chooses a “toolkit” Kt ⊆ X to carry for that period. Each tool x ∈ X has a

“rental” cost cx > 0 and value on date t given by vt(x), where the process {vt ∈ RX
+}t∈N is

independent and identically distributed according to some unknown distribution. On each date

t, the decision maker only observes the values vt(x) for those x that are in the toolkit she has

selected, Kt. As a bandit problem with non-independent arms, we cannot enlist the Gittins index.

In fact, at this level of generality, the best we can hope for — aside from asymptotic or long-run

results —, and the subject of Francetich and Kreps (2014), is to investigate the performance of

various decision heuristics. We borrow from the machine-learning literature in computer science

and operations research, which is concerned with developing algorithms that “perform well” in

bandit problems.3 But one can imagine special and restricted formulations of this problem that

are amenable to analytical solution, and the present paper provides one such formulation; this

allows us to build up our intuition regarding solutions to the more general problem.

While the spirit of the problem studied in this paper is closely related to Francetich and Kreps

(2014), the formal techniques employed borrow heavily from Keller and Rady (2010) and Klein

and Rady (2011), who study strategic experimentation with Poisson and exponential bandits,

respectively. In Keller and Rady (2010), each player has an identical copy of a bandit with one

1In terms of behavior, the Wald approach decouples payoffs and learning, but makes decisions irreversible. In
the bandit approach, choices yield both information and payoffs (assessed on the basis of said information), and such
choices are typically reversible. I consider some very special forms of irreversibility in section 5.

2See, for instance, Gittins and Jones (1974); Whittle (1980); Weber (1992).
3References to this literature are provided in Francetich and Kreps (2014). Part of this literature provides algo-

rithms even for problems where the arms of the bandit are statistically independent under the prior, so that the Gittins
index can be applied; this is because the computation of the index is typically complex as a practical matter.
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risky arm and one safe arm; in Klein and Rady (2011), the risky arms of each player’s bandit are

negatively correlated across players. These players can choose only one arm at a time, but they

can learn from each other. Like the decision maker in the present paper, they have more than

one source of information. However, to them, this “extra” information is public and free; our

decision maker can only exploit her additional source of information — choosing more than one

arm at a time— by means of payoff-relevant actions, so she faces a different trade-off.

Nonetheless, the baseline problem of our decision maker can be mapped to the benchmark

problem of the social planner in Klein and Rady (2011). From the point of view of this planner,

the two agents are our two projects; the opportunity cost of neglecting the safe arm is the cost of

the projects; and, since actions and outcomes are public, assigning both agents to the risky arm

corresponds to simultaneous experimentation. Thus, the results in section 4 have exact parallels

to results in Klein and Rady (2011), and the analysis in section 5 constitutes an extension of their

efficiency benchmark.

The rest of the paper is organized as follows. Section 2 describes the basics of the formal

framework. Section 3 analyzes the single-choice benchmark, while section 4 studies the baseline

multi-choice problem. Section 5 analyzes several extensions and variations of the baseline model:

the case of asymmetric costs (section 5.1); the case when choices must be nested (section 5.2);

the case of “imperfect monitoring,” namely, when successes from simultaneous experimentation

cannot be attributed to individual projects (section 5.3); and the case where the decision maker

has a third, separate project to try (section 5.4). Finally, section 6 concludes. Proofs are relegated

to the appendix, although some derivations that (hopefully) contribute to the exposition are kept

in the main body of the text.

2 The Model

2.1 Framework

There is a set of alternatives X = {x0, x1}, which represents projects, experts, or “tools” a

decision maker (henceforth, DM) can experiment on, or employ. The DM allocates her time

between the different subsets of X, representing research agendas, teams of experts, or “toolkits.”

The set of allocations of a unit of time between the subsets {x0}, {x1}, and {x0, x1} is A := {α ∈

[0, 1]3 : α0 + α1 + α2 ≤ 1}, where α0 denotes the fraction of a unit of time spent on {x0}, α1 is the

fraction of time spent on {x1}, and α2 is the time spent on simultaneous experimentation, while

1 − α0 − α1 − α2 is the fraction of time spent “on the empty set,” namely, doing no research.

Tools must be “rented” to be employed; c > 0 is the per-tool rental rate (research costs, wages,

fees). If successful, a tool employed yields a gross reward of 1. Successes arrive over time for

tools x0 and x1 according to Poisson processes with arrival rates λ0(1− ω) and λ0ω, respectively,

where λ0 > c is the known arrival rate and ω ∈ {0, 1} is the ex-ante unobserved state of nature. In

words, it is known that one and only one of these tools is profitable — and exactly how profitable
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it is —, but there is uncertainty as to which one is the profitable one.

If π ∈ [0, 1] represents the assessment of the DM that ω = 0, rewards are 0 from choosing

the empty set; λ0π − c from choosing {x0}; λ0(1 − π) − c from choosing {x1}; and λ0 − 2c from

choosing X. Future payoffs are discounted at the subjective rate ρ > 0. Choices also affect the

amount of data that the DM collects over any time interval. She only observes the arrival of

opportunities for the tools selected; by choosing a single tool, she cannot distinguish between the

event of an arrival for the tool she ignored and the event of failure of arrival altogether. Figure 1

summarizes ex-post payoffs and data collected under each of the possible choices.

A more flexible specification would allow for ω ∈ (0, 1), so that successes can arrive for

both tools. Under this alternative specification, successes are “allocated” to tool x0 or x1 with

probabilities 1 − ω and ω, respectively, independently of past arrivals and allocations; this yields

a partitioning of the Poisson process of success arrivals. But this additional flexibility comes at

the cost of slowing down the learning process, without providing significant new insights. An

arrival for a tool ceases to be conclusive evidence that the tool is the superior one. Instead, we

would assess a tool to be superior by observing a sufficiently larger frequency of arrivals for it

relative to the other tool; a single observation of success no longer suffices.

(a) DM chooses no tools (b) DM chooses tool x0

(c) DM chooses tool x1 (d) DM chooses booth tools

Figure 1: DM’s observations and payoffs under each of her possible choices.
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2.2 Bayesian Updating and the Bellman Equation

The prior of the DM that ω = 0 is denoted by π0 ∈ (0, 1); her corresponding posterior at

the beginning of period t is denoted by πt. Given beliefs represented by π ∈ [0, 1], expected

immediate rewards from allocating a unit of time according to α ∈ A are:

I(α, π, dt) : = α0
(
λ0π − c

)
dt + α1

(
λ0(1 − π) − c

)
dt + α2(λ0 − 2c)dt.

The event of arrival makes the posterior jump to 1, if the arrival is from x0, or to 0, if the

arrival is from x1. By spending time on both tools, either nothing new is learned, or the model

uncertainty is resolved immediately. If no arrival results from spending a fraction αt of time on

tool x0 over the time interval [t, t + Δt), the posterior is:

πt+Δt =
πte−αtλ

0Δt

πte−αtλ0Δt + 1 − πt
.

As Δt shrinks, we obtain:

π̇t = −αtλ
0πt(1 − πt).

If no arrival results from spending a fraction βt of time on x1, we get π̇t = βtλ
0πt(1 − πt).

The problem is stationary, and the state of the problem is the belief of the DM, π ∈ [0, 1].4

Let w : [0, 1] → R denote the (optimal, average) value function. The expected continuation value

given α ∈ A is:

C(α, π, dt) : = (α0 + α2) λ0π dt [w (1) − w (π)] + (α1 + α2) λ0(1 − π)dt [w (0) − w (π)]

+ w(π) +
[
1 − (α0 + α2)λ0π dt − (α1 + α2)λ0(1 − π)dt

]
(α1 − α0)λ0π(1 − π)w′(π)dt,

where w(0) = w(1) = λ0 − c. The Bellman equation of the problem is:

w(π) = max
α∈A

{
ρI(α, π, dt) + e−ρdtC(α, π, dt)

}
.

By invoking the approximations e−ρdt ≈ 1 − ρdt and (dt)n ≈ 0 for all naturals n ≥ 2, and

rearranging terms, we can rewrite the Bellman equation as:

w(π) = max
α∈A

{

α0

[

λ0π − c +
λ0π (w (1) − w(π)) − λ0π(1 − π)w′(π)

ρ

]

+ α1

[

λ0(1 − π) − c +
λ0(1 − π) (w (0) − w(π)) + λ0π(1 − π)w′(π)

ρ

]

+α2

[

λ0 − 2c +
λ0
(
λ0 − c − w(π)

)

ρ

]}

.

4The state space will still be [0, 1] if ω can take two interior values, 0 < ω < ω < 1. However, accommodating a
richer set of states of nature would require specifying a multi-dimensional state space.
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Since the expression in braces in the Bellman equation is linear in α, optimal strategies will

involve spending the full unit of time on the most promising toolkit, except perhaps at indiffer-

ence points. Because of the stationarity of the problem, in looking for optimal strategies, we may

restrict attention to stationary strategies, namely, strategies that recommend toolkits as a function

of beliefs. The next theorem establishes that we may further restrict attention to cutoff strategies;

namely, to stationary strategies with the following properties:

• If the strategy recommends the toolkit {x1} for some π ∈ [0, 1], then it also recommends

{x1} for any π′ ∈ [0, π);

• If the strategy recommends choosing {x0} for some π ∈ [0, 1], then it also recommends

{x0} for any π′ ∈ (π, 1].

Theorem 1 (Cutoff strategies). Let α∗ : [0, 1] → A be an optimal stationary strategy. Then, α∗ is a

cutoff strategy.

By virtue of this theorem, we shall focus on stationary cutoff strategies in the sequel.

3 Single-Choice Benchmark

The problem that our DM faces departs from standard multi-armed bandit problems in two

ways. First, x0 and x1 are negatively correlated: A success for one tool is conclusive evidence

that the other is unproductive. Second, the DM is not restricted to choosing at most a single

tool at a time; hence, she faces a multi-choice multi-armed bandit problem. This multi-choice

feature of the setting allows the DM to accumulate more data by experimenting with both tools

simultaneously, while the correlation feature allows her to learn about both tools from any single

one. This section analyzes the single-choice benchmark, to isolate the second feature.

The set of allocations here is A0 := {α ∈ [0, 1]2 : α0 + α1 ≤ 1}, and the Bellman equation

becomes:

w(π) = max
α∈A0

{

α0

[

λ0π − c +
λ0π (w (1) − w(π)) − λ0π(1 − π)w′(π)

ρ

]

+α1

[

λ0(1 − π) − c +
λ0(1 − π) (w (0) − w(π)) + λ0π(1 − π)w′(π)

ρ

]}

.

The same argument behind Theorem 1 applies to the single-choice problem. Let us first look

for a cutoff strategy α(∙; λ0, c) : [0, 1] → A0 of the following form:

• There is some π ∈ (0, 1) such that, for all π ∈ [0, π), α(π; λ0, c) = (0, 1); in words, for

sufficiently low beliefs that ω = 0, focus on tool x1.
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• There is some π ∈ (0, 1), π > π, such that, for all π ∈ (π, 1] , α(π; λ0, c) = (1, 0); namely,

for sufficiently high beliefs that ω = 0, focus on tool x0.

• For all π ∈ (π, π), α(π; λ0, c) = (0, 0); if there is sufficient uncertainty about the state of

nature, don’t bother experimenting.

It remains to specify the strategy at the cutoffs. We do this below, after identifying the corre-

sponding value function.

Under such a strategy, on (0, π), we have:

−λ0π(1 − π)w′(π) + (ρ + λ0(1 − π))w(π) = λ0(1 − π)(ρ + λ0 − c) − ρc. (1)

This equation is similar to equation (1) in Keller and Rady (2010). The homogeneous part of the

solution is wH(π) := πψ(π)−
ρ

λ0 , where ψ(π) := 1−π
π . Notice that wH ′(π) = 1−π+(ρ/λ0)

π(1−π) wH(π).

For the particular part of the solution, we guess and verify wP(π) = a(1 − π) + b. For this guess

to be correct, we must have:

λ0π(1 − π)a + (ρ + λ0(1 − π))(a(1 − π) + b) = λ0(1 − π)(ρ + λ0 − c) − ρc,

which gives b = −c and a = λ0. Up to a constant of integration C1, the solution to this differential

equation is w(π) = C1πψ(π)−
ρ

λ0 + λ0(1 − π) − c.

On (π, 1), we have:

λ0π(1 − π)w′(π) + (ρ + λ0π)w(π) = λ0π(ρ + λ0 − c) − ρc. (2)

This equation is almost identical to equation (1) in Keller and Rady (2010); up to a constant of

integration C0, the solution is w(π) = C0(1 − π)ψ(π)
ρ

λ0 + λ0π − c.

We identify a candidate for an optimal strategy by pinning down π, π, C1, and C0. We do so

by means of the value-matching (VM) and smooth-pasting (SP) conditions.

Condition (VM). w(π) = 0 = w(π)

Condition (SP). w′(π) = 0 = w′(π)

The (VM) condition says that, at the cutoff π, the DM must be indifferent between trying out

tool x1 and giving up altogether; similarly for π and tool x0. The (SP) condition says that, at the

cutoffs, the marginal value of learning from the corresponding tool must equal that of the “no

learning” choice, which equals 0. Without these conditions, the DM would be giving up either

“too soon” or “too late.”

The first equality in (VM) is

C1πψ(π)−
ρ

λ0 + λ0(1 − π) − c = 0,
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which gives C1 = C1(π) := − λ0(1−π)−c
π ψ(π)

ρ

λ0 . The second equality in (VM) gives C0 = C0(π) :=

− λ0π−c
1−π ψ(π)−

ρ

λ0 . From (SP), we find:

π =
λ0 − c

λ0

λ0 + ρ

λ0 + ρ − c
;

this expression lies in (0, 1) provided that λ0 > c. With this expression for π, we can write C1(π)

as C1(π) = λ0c
λ0+ρ

ψ(π)
ρ

λ0 . The second equality in (SP) gives π = 1 − π ∈ (0, 1), which leads to

C0(π) = C1(π)ψ(π)−2 ρ

λ0 .

To have a strategy of the form described in the three bullet points, with an intermediate range

of beliefs in which the DM chooses the empty set, we must have π > π (namely, π < 1/2). This

inequality holds if and only if ρ(2c − λ0) > λ0(λ0 − c), which is possible only if λ0 < 2c. (Recall

that we assume that λ0 > c.)

I will say that the tools are expensive if λ0 < 2c. Indeed, λ0 < 2c means that, in the absence of

learning, the empty set is more profitable than the complete toolkit. In this case, the only rationale

for choosing the complete toolkit is its information value; but this value is not high enough for

an impatient DM, one with ρ > λ0(λ0−c)
2c−λ0 . Conversely, we have that ρ(2c − λ0) ≤ λ0(λ0 − c) either

if tools are cheap, λ0 ≥ 2c, or if the DM is patient, namely, if ρ ≤ λ0(λ0−c)
2c−λ0 .

Case 1 (Expensive tools and impatience). ρ(2c − λ0) > λ0(λ0 − c)

Case 2 (Cheap tools and/or patience). ρ(2c − λ0) ≤ λ0(λ0 − c)

Figure 2 portrays the partition of the space of “objective parameters” {(λ0, c) ∈ R2
+ : λ0 > c}

— excluding the “subjective” parameter ρ — according to whether they identify cheap tools or

a sufficiently patient DM. The two cases correspond to the cases of low, intermediate, and high

stakes in Klein and Rady (2011).5

Putting all of these pieces together, we identify the following candidate solution to the Bell-

man equation under case 1:

w0(π) =






λ0c
λ0+ρ

π
(

ψ(π)
ψ(π)

)− ρ

λ0
+ λ0(1 − π) − c π ∈ [0, π];

0 π ∈ (π, π);

λ0c
λ0+ρ

(1 − π)
(

ψ(π)
ψ(π)

) ρ

λ0
+ λ0π − c π ∈ [π, 1].

(3)

This function is continuously differentiable, strictly decreasing on [0, π], and strictly increasing

on [π, 1] (see Lemma A1 in the appendix). Figure 3a on page 12 shows the plot of w0 for λ0 = 0.7,

c = 0.5, and ρ ∈ {1, 10}.

5I thank Sven Rady for bringing this to my attention. In fact, with the lump sum from an arrival normalized to
1, and with s denoting the flow payoff from the safe arm, the case of low stakes in Klein and Rady (2011) can be
rewritten as ρ(2s − λ0) > λ0(λ0 − s); this is exactly the inequality in case 1, with s playing the role of c.
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Figure 2: Objective-parameter space for a fixed ρ = ρ0. The colored portion of the graph represents the
parameter space for the problem. The yellow region represents cheap tools. The middle curve is the level
curve of the threshold λ0(λ0 − c) = ρ0(2c − λ0). In the green region, tools are expensive but ρ = ρ0 is
“patience enough.” These two regions combined represent case 2; the blue region represents case 1.

Below cutoff π, while the DM is experimenting on tool x1 unsuccessfully, her posterior that

the state is ω = 1 gradually decreases. In between cutoffs, there is no experimentation, so beliefs

remain frozen. Whether we recommend the DM to hold on to x1 or to give up at π, the result is

always the same, well-defined dynamics for the posterior: If π0 < π, in the absence of successes,

the posterior increases gradually until it reaches π and freezes there. The same is true for x0 and

π: Whether the strategy recommends x0 or to give up at π, the path of posteriors starting from

any prior in (π, 1] is well-defined. Thus, in the terminology of Klein and Rady (2011), all of these

different specifications for the strategy at the thresholds are admissible.6

In this case, I will resolve indifference in favor of experimentation, and abuse terminology by

talking about “the” optimal strategy. In the sequel, whenever possible, I will resolve indifference

in favor of the largest bundle.

If the DM is sufficiently patient or the tools are sufficiently cheap — that is, under case

2 —, she may be willing to hold on to the singletons for longer. Consider a cutoff strategy

α(∙; λ0, c) : [0, 1] → A0 of the following form:

• For all π ∈ [0, 1/2), α(π; λ0, c) = (0, 1); if π < 1 − π, that is, if state ω = 0 is assessed to be

less likely than state ω = 1, focus on tool x1.

• For all π ∈ (1/2, 1], α(π; λ0, c) = (1, 0); if state ω = 0 is believed to be more likely than

state ω = 1, focus on tool x0 instead.

The recommendation at the cutoff 1/2 is discussed below.

The (VM) condition is now C1 + λ0 − 2c = C0 + λ0 − 2c, which gives C1 = C0 =: C. The value

6Klein and Rady (2011) define a strategy to be admissible if, starting from any prior, the strategy yields a well-
defined path of posteriors t 7→ πt.
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of C is determined by (SP), w′(1/2) = 0, to be C = (λ0)2

λ0+2ρ
. Thus,

w0
(

1
2

)

=
λ0(ρ + λ0 − c) − 2ρc

λ0 + 2ρ
,

which is non-negative provided that ρ(2c − λ0) ≤ λ0(λ0 − c) (case 2).

We now have:

w0(π) =






(λ0)2

λ0+2ρ
πψ(π)−

ρ

λ0 + λ0(1 − π) − c π ∈
[
0, 1

2

]
;

(λ0)2

λ0+2ρ
(1 − π)ψ(π)

ρ

λ0 + λ0π − c π ∈
(

1
2 , 1
]

.
(4)

Again, this function is continuously differentiable, strictly decreasing on [0, 1/2), and strictly

increasing on (1/2, 1].7 Figure 3b shows the plot of w0 for λ0 = 0.7, c = 0.5, and ρ ∈ {0.1, 0.45}.

To the right of the cutoff 1/2, the DM experiments on tool x1; while unsuccessful, her posterior

gradually increases. To the left of 1/2, instead, the posterior gradually decreases. If we specify

that the DM should choose x1 at the cutoff, we run into the following problem: The posterior

is strictly increasing at 1/2, but it switches sign and becomes strictly decreasing above 1/2.

This specification yields an inadmissible strategy; around the cutoff, the path of the posterior

“chatters” (Romer, 1986). The same problem arises if we recommend x0 at the cutoff instead.8

To obtain an admissible strategy, beliefs must freeze at the cutoff 1/2. In the knife-edge case

where the weak inequality in case 2 holds with equality, this can be achieved by specifying that

the DM chooses the empty set at the threshold. Outside this knife-edge case, experimentation

is strictly profitable; a way to prevent the posterior from chattering is to recommend the DM to

split her time between x0 and x1. By dividing the intensity of experimentation equally between

the two tools, beliefs (virtually) freeze at the threshold unless and until an arrival is observed.

The next theorem presents the optimal strategy in this single-choice benchmark.
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(a) Graph of w0 in (3)
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(b) Graph of w0 in (4)

Figure 3: Graph of the value function in the single-choice benchmark.

7The proof of this assertion is very similar to that for w0 in (3), Lemma A1; thus, any further details are omitted.
8I thank Sven Rady for making me aware of the presence of the admissibility problem in this case.
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Theorem 2 (Single-choice benchmark). Assume that λ0 > c. Under case 1 — if ρ(2c − λ0) >

λ0(λ0 − c) —, the cutoff strategy given by

αβ(π; λ0, c) =






(0, 1) π ∈
[
0, πβ

]
,

(0, 0) π ∈
(

πβ, πβ
)

,

(1, 0) π ∈
[
πβ, 1

]
,

(5)

where πβ := λ0−c
λ0

λ0+ρ
λ0+ρ−c ∈

(
0, 1

2

)
and πβ := 1 − πβ, is the optimal strategy.9 Under case 2 — when

ρ(2c − λ0) ≤ λ0(λ0 − c) —, the optimal strategy is given by:

αβ(π; λ0, c) =






(0, 1) π ∈
[
0, 1

2

)
,

(
1
2 , 1

2

)
π = 1

2 ,

(1, 0) π ∈
(

1
2 , 1
]

.

(6)

When λ0 < 2c, tools are costly for a DM who is sufficiently unsure about the state of nature.

This cost outweighs the information value to an impatient DM, and she gives up. Instead, a

sufficiently patient DM values this information, and never gives up. In either case, the DM hires

the most promising tool — if it is sufficiently promising under impatience.

The experimentation dynamics under the optimal strategy in Theorem 2 are depicted in Fig-

ure 4. A sufficiently impatient DM who is unsure about the state of nature, one whose prior falls

in the mid range
(

πβ, πβ
)

, “gives up” if tools are expensive; learning is simply too costly. If she

is sufficiently confident about the state being ω = 1 — namely, if her prior is in the low range
[
0, πβ

]
—, then the DM starts by renting tool x1 alone. If this tool proves successful, then it is

kept forever thereupon. While no arrivals occur for this tool, the DM revises her initial confi-

dence, and becomes more and more pessimistic about this tool being productive. Of course, she

becomes more and more optimistic about the state being ω = 0. However, her posterior does

not reach the point of being “optimistic enough” to switch to x0: Eventually, her lost confidence

leads her to drop x1 and give up altogether, never giving tool x0 a chance.

Unlike her more impatient counterpart, a sufficiently patient DM — or one facing cheap tools

— never gives up. She starts with the tool about which she feels more confident, and holds on

to it. Eventually, if there are no arrivals, her posterior approaches 1/2. At this point, she divides

her attention or effort equally between the two tools until an arrival occurs.

Thus, an impatient DM tries at most a single tool, and never switches from one tool to the

other. If she starts on tool x1, she gives up after time

T1 :=
ln (ψ(π0)) − ln

(
ψ
(
πβ
))

λ0

9The superscript β is a mnemonic for “(single-choice) benchmark.”
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(a) Belief dynamics under strategy (5) (b) Belief dynamics under strategy (6)

Figure 4: Belief dynamics under the strategy identified in Theorem 2.

if no successes are observed; for x0, she waits until

T0 :=
ln
(

ψ
(

πβ
))

− ln (ψ(π0))

λ0 .

Finally, under case 2, the DM waits until

T′ :=

∣
∣ln
(
ψ
(

1
2

))
− ln (ψ(π0))

∣
∣

λ0 .

4 Optimal Multi-Choice Strategy

In section 3, the DM can choose no more than one tool at a time. At most, she can divide her

attention or effort between the two; but she cannot test them simultaneously. In this section, we

allow her to try out both tools at once.

By Theorem 1, we focus on cutoff strategies. The complete toolkit yields better data, and

information is more valuable when the DM is sufficiently unsure about the true state. Consider

first a cutoff strategy α∗(∙; λ0, c) : [0, 1] → A with the following properties:

• There is some π ∈ (0, 1) such that, for all π ∈ [0, π), α∗(π; λ0, c) = (0, 1, 0); for sufficiently

low beliefs that ω = 0, focus on tool x1.

• There is some π ∈ (0, 1), π ≥ π, such that, for all π ∈ (π, 1] , α∗(π; λ0, c) = (1, 0, 0); if state

ω = 0 is deemed sufficiently likely, then focus on tool x0.

• For all π ∈ (π, π), α∗(π; λ0, c) = (0, 0, 1); if there is sufficient uncertainty about the state,

then experiment on both tools simultaneously.

Under such a strategy, on (0, π), we have the same differential equation as in section 3,

equation (1). Thus, the solution has the same structure as before. The same is true on (π, 1),

where equation (2) applies. On (π, π), we now have

(λ0 + ρ)w(π) = ρ(λ0 − 2c) + λ0(λ0 − c);

solve for w(π) to get w(π) = λ0 − c − ρc
λ0+ρ

.
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The (SP) conditions are the same as before; while the DM may enjoy a positive expected

payoff when experimenting simultaneously on both tools, the marginal value of information is 0

(the payoff is constant) in this range. The (VM) conditions are now:

Condition (VM). w(π) = λ0 − c − ρc
λ0+ρ

= w(π)

The first equality in Condition (VM) is:

C1πψ(π)−
ρ

λ0 + λ0(1 − π) − c = λ0 − c −
ρc

λ0 + ρ
,

which gives

C1 = C1(π) :=
λ0(λ0 + ρ)π − ρc

π(λ0 + ρ)
ψ(π)

ρ

λ0 ;

the second equality is very similar to the first, and gives

C0 = C0(π) :=
λ0(λ0 + ρ)(1 − π) − ρc

(1 − π)(λ0 + ρ)
ψ(π)−

ρ

λ0 .

With the modified (VM) conditions, the first equality in Condition (SP) leads to:

π =
λ0 + ρ

λ0 + ρ + c
c

λ0 ∈ (0, 1).

With this expression for π, we can write C1(π) as C1(π) = λ0c
λ0+ρ

ψ(π)
ρ

λ0 +1. The second equality

in Condition (SP) is analogous to the first, and solving for π gives:

π =
(λ0 + ρ)(λ0 − c) + λ0c

λ0(λ0 + ρ + c)
= 1 − π ∈ (0, 1),

so C0(π) = C1(π)ψ(π)−2
(

ρ

λ0 +1
)

. Notice that π ≥ π (or π ≤ 1/2) if and only if ρ(2c − λ0) ≤

λ0(λ0 − c), namely, under case 2: The DM is willing to hold both tools when these are cheap or

when she is patient enough to appreciate the additional information provided to her by simulta-

neous experimentation.

The candidate to solve the Bellman equation is now:

w0(π) =






λ0cψ(π)
λ0+ρ

π
(

ψ(π)
ψ(π)

)− ρ

λ0
+ λ0(1 − π) − c π ∈ [0, π);

λ0 − c − ρc
λ0+ρ

π ∈ [π, π];

λ0c
(λ0+ρ)ψ(π) (1 − π)

(
ψ(π)
ψ(π)

) ρ

λ0
+ λ0π − c π ∈ (π, 1].

(7)

As in section 3, w0 in (7) is continuously differentiable, strictly decreasing on [0, π), and strictly

increasing on (π, 1]. Figure 5 shows the plot of w0 for λ0 = 0.7, c = 0.3, and ρ ∈ {0.1, 10}.
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Figure 5: Graph of w0 in (7); λ0 = 0.7, c = 0.3, and ρ ∈ {0.1, 10}.

By choosing the complete toolkit, the DM can gather more data. Doing so allows her to

distinguish between the events of failure of arrival altogether and arrival from a neglected tool,

thus learning “faster.” Notwithstanding, due to the negative correlation, any one tool provides

some information about the other. The latter source of information is particularly relevant when

tools are expensive; in this case, while the DM has the option to rent both tools at once, these

may be too costly for her to exercise this option.

The next theorem presents the optimal strategy for the DM when she is allowed to engage

in simultaneous experimentation. This result is the counterpart of Propositions 1 and 2 in Klein

and Rady (2011).

Theorem 3 (Optimal strategy). Under case 2 — if ρ(2c − λ0) ≤ λ0(λ0 − c) —, the cutoff strategy

given by

α∗(π; λ0, c) =






(0, 1, 0) π ∈ [0, π∗) ,

(0, 0, 1) π ∈ [π∗, π∗] ,

(1, 0, 0) π ∈ (π∗, 1] ,

(8)

where π∗ := λ0+ρ
λ0+ρ+c

c
λ0 ∈

(
0, 1

2

)
and π∗ := 1 − π∗, is the optimal strategy. Otherwise, under case 1, the

optimal strategy is the same as in (5) in Theorem 2.10

Figure 6 portrays the dynamics of experimentation under the optimal strategy in Theorem 3.

If her prior falls in the mid range [π∗, π∗], the DM starts by renting both tools when these are

cheap or when she is sufficiently patient. There is no updating while there are no arrivals. As

soon as the first arrival occurs, the posterior jumps to either 1 or 0, depending on which one of

the tools proves successful. Thenceforth, only the successful tool is kept.

Outside this range, the dynamics are similar to those under the strategy in Theorem 2. The

difference is that, if the DM starts with a singleton and becomes gradually pessimistic, she will

retain the first tool while eventually hiring the second one. Bad news about the chosen tool is

10We represent actions in A0 as actions in A by adding a 0 as a third coordinate.
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Figure 6: Belief dynamics under the strategy in (8)

good news about the other tool; but the lack of success leaves her unsure, rather than sufficiently

confident about the neglected tool. Now, when unsure, the DM chooses both tools at once instead

of, in the limit, dividing her attention between them. At this point, it may well happen that the

first tool proves its worth after all, and the newly acquired tool is dismissed. If the new tool

proves worthwhile instead, the first one is dismissed.

When the DM is sufficiently impatient, she does not take “advantage” of having the option

to choose the complete toolkit if the tools are expensive. Otherwise, she never discards a tool

unless and until the model uncertainty is fully resolved.

5 Extensions

This section analyzes several extensions to the basic model, or variations of it. The first

subsection considers the case of asymmetric costs. The second discusses the case when choices

are restricted to be nested. The third considers the case of “imperfect monitoring,” namely,

when the individual source of successes from employing both tools at once cannot be identified.

The fourth and final subsection introduces a third, separate tool that the DM can try out before

employing (any subset of) the original two.

5.1 Asymmetric Costs

This subsection discusses the case where the tools have different costs. Let c0, c1 > 0 denote

the rental rates of x0, x1, respectively; assume that c1 < c0 < λ0. Given π ∈ [0, 1], expected

instantaneous rewards are now 0 from choosing the empty set; λ0π − c0 from {x0}; λ0(1−π)− c1

from {x1}; and λ0 − c0 − c1 from X.

If the DM can only choose one tool at a time, as in section 3, her problem is represented by

the following Bellman equation:

w(π) = max
α∈A0

{

α0

[

λ0π − c0 +
λ0π (w (1) − w(π)) − λ0π(1 − π)w′(π)

ρ

]

+α1

[

λ0(1 − π) − c1 +
λ0(1 − π) (w (0) − w(π)) + λ0π(1 − π)w′(π)

ρ

]}

.

By analogous value-matching and smooth-pasting conditions to those in Section 3, we now
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get the following cutoffs for a strategy in which the DM gives up for some mid range of beliefs:

πβ =
λ0 + ρ

λ0

λ0 − c1

λ0 + ρ − c1
, πβ =

ρc0

λ0(λ0 + ρ − c0)
.

We have that πβ > πβ if and only if:

λ0 <
ρ

λ + ρ

λ0 + ρ − c1

λ0 + ρ − c0
c0 + c1;

this condition reduces to λ0(λ0 − c) < ρ(2c − λ0) (case 1) when c0 = c1 =: c, and it is satisfied if

the costs are sufficiently high and the DM is sufficiently impatient. The counterpart of (3) is:

w0(π) =






λ0c1
λ0+ρ

π

(
ψ(π)

ψ(πβ)

)− ρ

λ0

+ λ0(1 − π) − c1 π ∈
[
0, πβ

)
;

0 π ∈
[
πβ, πβ

]
;

λ0c
λ0+ρ

(1 − π)
(

ψ(π)
ψ(πβ)

) ρ

λ0

+ λ0π − c0 π ∈
(

πβ, 1
]

.

(9)

Because of the more attractive immediate rewards, the DM experiments with the cheaper

tool for a larger interval of beliefs: We have that πβ > 1 − πβ if and only if c1 < c0. In the

range of low beliefs, the DM tries tool x1 out. The cutoff πβ is strictly decreasing in c1; thus,

as this tool becomes more expensive, the DM gives up “faster,” or uses it for a smaller range

of beliefs. Analogously, πβ is strictly increasing in c0; as x0 becomes more expensive, the DM

requires higher confidence in it to employ it.

The case of cheap tools or sufficiently patient DM corresponds now to the case:

λ0 ≥
ρ

λ + ρ

λ0 + ρ − c1

λ0 + ρ − c0
c0 + c1.

The smooth-pasting condition is the same as before: If π
β
0 denotes the threshold, we have

w′
(

π
β
0

)
= 0. The value-matching condition identifies the threshold as the higher root of the

following quadratic equation:

(c0 − c1)(λ0)2x2 −
[
(c0 − c1)(λ0)2 − 2ρλ0(λ0 + ρ)

]
x − ρ(λ0 + ρ)(λ0 + c0 − c1) = 0;

this equation yields x = 1/2 as unique solution if c0 = c1. Again, the cheapest tool is the one

employed for longer: π
β
0 > 1/2. The counterpart of (4) is:

w0(π) =






(λ0)2
(

1−π
β
0

)

λ0
(

1−π
β
0

)
+ρ

π

(
ψ(π)

ψ(π
β
0 )

)− ρ

λ0

+ λ0(1 − π) − c1 π ∈
[
0, π

β
0

]
;

(λ0)2π
β
0

λ0π
β
0 +ρ

(1 − π)
(

ψ(π)

ψ(π
β
0 )

) ρ

λ0

+ λ0π − c0 π ∈
(

π
β
0 , 1
]

.

(10)
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The function in (10) is non-negative provided that

π
β
0 ≥

ρc0

λ0(λ0 + ρ − c0)
= πβ.

This inequality says that the DM should not experiment on {x0} for a larger range of beliefs

than she would when she entertains the possibility of giving up. Under symmetric costs, this

inequality is automatically satisfied in the range of parameters for which the corresponding

strategy is optimal; the DM holds on to a failing {x0} until experimentation is no longer worth

her while. But here, she has in {x1} a cheaper, more attractive alternative that allows her to

continue learning.

Figure 7a shows the plot of w0 in (9) in the case (c0, c1) = (0.6, 0.35), λ0 = 0.7, and ρ = 0.99.

Figure 7b depicts w0 in (10), in the case (c0, c1) = (0.5, 0.35), λ0 = 0.7, and ρ = 0.99.

The portion of the single-choice strategy corresponding to case 1, under which the DM gives

up for an intermediate range of beliefs, is also part of the optimal strategy under simultaneous

experimentation. Therefore, I describe this instance of the strategy below, in the simultaneous-

experimentation case. As for the strategy that gives rise to value function (10), the issue of

admissibility applies. At the cutoff π
β
0 , the DM splits her time between the two tools.

If we allow the DM to choose both tools at once, the Bellman equation of the problem is:

w(π) = max
α∈A

{

α0

[

λ0π − c0 +
λ0π [w (1) − w(π)] − λ0π(1 − π)w′(π)

ρ

]

+ α1

[

λ0(1 − π) − c1 +
λ0(1 − π) [w (0) − w(π)] + λ0π(1 − π)w′(π)

ρ

]

+α2

[

λ0 − c0 − c1 +
λ0π [w (1) − w(π)] + λ0(1 − π) [w (0) − w(π)]

ρ

]}

.
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(a) Graph of w0 in (9); c0 = 0.6, c1 = 0.35.
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(b) Graph of w0 in (10); c0 = 0.5, c1 = 0.35

Figure 7: Value function under asymmetric costs, given λ0 = 0.7 and ρ = 0.99.
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The conditions to identify the optimal strategy having the form in section 4 when the DM

experiments with both tools at once are:

Condition (VM-a). w(π) = λ0 − c1 −
ρc0

λ0+ρ
+ λ0(c1−c0)

λ0+ρ
π

Condition (VM-b). w(π) = λ0 − c1 −
ρc0

λ0+ρ
+ λ0(c1−c0)

λ0+ρ
π

Condition (SP-a). w′(π) = λ0(c1−c0)
λ0+ρ

Condition (SP-b). w′(π) = λ0(c1−c0)
λ0+ρ

From these conditions, we get:

π∗ =
λ0 + ρ

λ0 + ρ + c1

c0

λ0 , π∗ =
(λ0 + ρ)(λ0 − c1) + λ0c0

λ0(λ0 + ρ + c0)
.

We have that π∗ ≥ π∗ if and only if:

λ0(λ0 − c1) + λ0c0

[
c1 − c0

λ0 + ρ + c1

]

≥ ρ

[
λ0 + ρ + c0

λ0 + ρ + c1
c0 + c1 − λ0

]

.

This condition reduces to case 2, λ0(λ0 − c) ≥ ρ(2c − λ0), when c0 = c1 =: c, and holds if the

costs are sufficiently low or if the DM is sufficiently patient. The counterpart of (7) is:

w0(π) =






λ0c0ψ(π)
λ0+ρ

π
(

ψ(π)
ψ(π)

)− ρ

λ0
+ λ0(1 − π) − c1 π ∈ [0, π∗);

λ0 − c1 −
ρc0

λ0+ρ
+ λ0(c1−c0)

λ0+ρ
π π ∈ [π∗, π∗];

λ0c1
(λ0+ρ)ψ(π) (1 − π)

(
ψ(π)
ψ(π)

) ρ

λ0
+ λ0π − c0 π ∈ (π∗, 1].

(11)

Figure 8 shows the plot of w0 for the case (c0, c1) = (0.5, 0.35), λ0 = 0.7, and ρ = 0.99.

This function is non-negative provided that its minimizer, which falls in the range (π∗, 1],

is at least at large as ρc0

λ0(λ0+ρ−c0)
= πβ. This condition says that the range of beliefs at which

the marginal value corresponding to {x0} is positive cannot be larger than the corresponding

range under the single-choice benchmark. In the latter case, when there is no experimentation

for beliefs in the mid range, the value function is strictly increasing exactly in the range in which

{x0} is recommended. Here, however, the complete set is employed for mid-range beliefs; and

with c0 > c1, the slope of the value function is negative on this range and becomes positive after

the minimizer, after having switched to {x0}. For optimality, we want that this further descent

after having switched to {x0} does not dip the value function below 0.

Under symmetric costs, the case π∗ < π∗ corresponds to the case πβ > πβ. This need not be

the case under asymmetric costs. A sufficient condition for such correspondence, which allows
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Figure 8: Graph of w0 in (11); λ0 = 0.7, ρ = 0.99, c0 = 0.5, and c1 = 0.35.

the counterpart of the strategy in section 4 to be optimal under asymmetric costs, is the following:

c0 > λ0 λ0 + ρ

λ0 + 2ρ
; c1 >

λ0 + ρ

ρ
(λ0 − c0).

While both costs must be lower than λ0, they should not be “too low.”

Theorem 4 (Asymmetric costs). Assume that λ0 > c0 > c1; c0 > λ0 λ0+ρ
λ0+2ρ

; c1 > λ0+ρ
ρ (λ0 − c0). If

λ0(λ0 − c1) + λ0c0

[
c1 − c0

λ0 + ρ + c1

]

≥ ρ

[
λ0 + ρ + c0

λ0 + ρ + c1
c0 + c1 − λ0

]

,

and if the minimum of (11) is at least as high as:

(λ0 + ρ)(λ0 − c1)(λ0 + ρ + c1) − λ0c0(c0 − c1) − ρc0(λ0 + ρ + c0)
(2ρ + λ0)(λ0 + ρ + c0)

≥ 0,

the strategy given by (8) with π∗ = λ0+ρ
λ0+ρ+c1

c0
λ0 and π∗ = (λ0+ρ)(λ0−c1)+λ0c0

λ0(λ0+ρ+c0)
is the optimal strategy. If

λ0(λ0 − c1) + λ0c0

[
c1 − c0

λ0 + ρ + c1

]

< ρ

[
λ0 + ρ + c0

λ0 + ρ + c1
c0 + c1 − λ0

]

,

the optimal strategy is the same as in (5), with πβ = λ0+ρ
λ0

λ0−c1
λ0+ρ−c1

and πβ = ρc0

λ0(λ0+ρ−c0)
.

The lower bound on the minimum, which is non-negative in the corresponding case of low

costs or sufficient patience, helps handle the non-monotonicity of the value function on the range

in which the optimal strategy recommends {x0}. In the case where tools are expensive and

the DM is sufficiently impatient, this lower bound is negative, while the corresponding value

function has 0 as its minimum. In this case, the additional condition is redundant.11

11No such additional condition is needed under symmetric costs.
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5.2 Nested Choices

So far, the DM has had the option to hire a previously ignored tool, and to “re-hire” a tool that

has been previously tried out and dismissed. However, it may be that such tools “disappear.” For

instance, a neglected tool may become rusty; a research project that is set aside may be scooped

by another researcher; an overlooked applicant or a dismissed employee may find another job

and exit the market. In this subsection, I consider the extreme case where choices must be nested,

so once a tool is ignored or discarded it can never be chosen. This restriction introduces an option

value to holding on to tools beyond what a less-restricted DM would consider optimal.

Now, the state space keeps track not only of the beliefs of the DM, but also of her feasible

set of choices. For simplicity of the discussion, I restrict the DM to spending all of each time

interval on a single toolkit; that is, I consider the restricted action space Ar := {α ∈ {0, 1}3 :

α0 + α1 + α2 ≤ 1}.12

Let wr : [0, 1] × 2X → R represent the restricted value function. Clearly, wr(π, ∅) = 0. The

Bellman equation for wr(π, {x1}) is:

wr(π, {x1}) = max
{

0, wr(π, {x1}) +
[
λ0(1 − π) − c

+
λ0

ρ
(1 − π)

(
λ0 − c − wr(π, {x1}) + π(1 − π)wr ′(π, {x1})

)
− wr(π, {x1})

]

ρdt

}

;

either wr(π, {x1}) = 0, or wr(π, {x1}) solves the same differential equation (1) as w does in

Section 3. Looking for a cutoff strategy, the same (VM) and (SP) conditions relating the choice of

{x1} and the choice of the empty set apply. Thus, we have:

wr(π, {x1}) =






λ0c
λ0+ρ

π
(

ψ(π)
ψ(πr

1)

)− ρ

λ0
+ λ0(1 − π) − c π ∈ [0, πr

1],

0 π ∈ (πr
1, 1],

(12)

where πr
1 := λ0−c

λ0
λ0+ρ

λ0+ρ−c = πβ. The same argument applies to wr(π, {x0}), leading to:

wr(π, {x0}) =






0 π ∈ [0, πr
0),

λ0c
λ0+ρ

(1 − π)
(

ψ(π)
ψ(πr

0)

) ρ

λ0
+ λ0π − c π ∈ [πr

0, 1],
(13)

where πr
0 := πβ. Finally, for wr(π, X), we have:

wr(π, X) = max {wr(π, {x0}), wr(π, {x1}),
(

λ0 − 2c +
λ0(λ0 − c − wr(π, X))

ρ
− wr(π, X)

)

dt + wr(π, X)
}

.

As before, we look for an optimal cutoff strategy that recommends the singleton {x1} for suffi-

ciently low π, and the singleton {x0} for sufficiently high π. Assume that ρ(2c−λ0) ≤ λ0(λ0 − c);

12The superscript r is a mnemonic for “restricted.”
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hence, πβ ≥ 1/2 ≥ πβ. (The case πβ < πβ is handled similarly.) On [0, πβ),

wr(π, X) = max

{

wr(π, {x1}),

(

λ0 − 2c +
λ0(λ0 − c − wr(π, X))

ρ
− wr(π, X)

)

dt + wr(π, X)
}

.

We look for a cutoff π ∈ (0, πβ) such that wr(π, {x1}) = λ0 − c − ρc
λ0+ρ

. Similarly, on (πβ, 1],

wr(π, X) = max

{

wr(π, {x0}),

(

λ0 − 2c +
λ0(λ0 − c − wr(π, X))

ρ
− wr(π, X)

)

dt + wr(π, X)
}

,

and we seek an analogous cutoff π ∈ (πβ, 1) for wr(π, {x0}).

The existence of these cutoffs is established in Lemma A3 in the appendix. The remaining

details of the optimal strategy are provided in the following theorem.

Theorem 5 (Nested choices). There exist two unique cutoffs denoted by πr ∈ (0, min{πβ, πβ}), πr ∈

(max{πβ, πβ}, 1) such that, when choices must be nested, the optimal strategy is as follows:

• αr(π, ∅; λ0, c) = (0, 0, 0);

• αr(π, {x1}; λ0, c) =

{
(0, 1, 0) π ∈

[
0, πβ

]
,

(0, 0, 0) π ∈
(
πβ, 1

]
;

• αr(π, {x0}; λ0, c) =






(0, 0, 0) π ∈
[
0, πβ

)
,

(1, 0, 0) π ∈
[
πβ, 1

]
;

• If ρ(2c − λ0) ≤ λ0(λ0 − c) (case 2), then αr(π, X; λ0, c) =






(0, 1, 0) π ∈ [0, πr) ,

(0, 0, 1) π ∈ [πr, πr] ,

(1, 0, 0) π ∈ (πr, 1] ;

• If ρ(2c − λ0) > λ0(λ0 − c) (case 1), then αr(π, X; λ0, c) is as in (5) in Theorem 2.

At the outset, the feasible set for the DM is all of X. If the tools are expensive, a sufficiently

impatient DM behaves as her unrestricted counterpart does. However, in the presence of cheap

tools or sufficient patience, the DM has to be more certain about the state to go with a singleton:

If ρ(2c − λ0) ≤ λ0(λ0 − c), then πr < πβ ≤ π∗ ≤ π∗ ≤ πβ < πr. Intuitively, by starting with a

singleton, she is giving up the option value of being able to switch to either of the tools at a later

point in time — after having gathered more information.

5.3 Imperfect Monitoring

In section 4, we have assumed that the DM can observe from which tool successes come when

renting both tools at once. In other words, she can “monitor” both tools closely and identify the

source of a success when they are simultaneously employed. In applications, it may be the case
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that the output of a team can only be measured with respect to the team, and the individual

contributions of the team members cannot be readily assessed. This subsection considers the

case where the DM, when renting both tools, can only observe the occurrence of arrivals but not

their “precedence”; all she observes is whether the toolkit X has produced value.

Figure 9 describes ex-post payoffs to the DM and the data she now collects from the complete

toolkit. In this variation of the problem, the complete toolkit is as uninformative about the state

as the empty toolkit; the only difference between the two is that the former yields an immediate

payoff of λ0 − 2c. To learn about the state, the DM must give tools a chance to stand on their own.

Unlike under the main specification, “experimentation” now entails focusing on singletons.

The next theorem presents the optimal strategy under this alternative specification.

Theorem 6 (Imperfect monitoring). Assume that ρ(λ0 − 2c) > λ0c. The cutoff strategy given by

α∗(π; λ0, c) =






(0, 1, 0) π ∈ [0, π′) ,

(0, 0, 1) π ∈
[
π′, π′] ,

(1, 0, 0) π ∈
(
π′, 1

]
,

(14)

where π′ := λ0+ρ
ρ+c

c
λ0 ∈

(
0, 1

2

)
and π′ := 1 − π′, is the optimal strategy. If ρ(λ0 − 2c) ≤ λ0c, the

optimal strategy is as in Theorem 2: It is given by (6) if −λ0(λ0 − c) ≤ ρ(λ0 − 2c) (case 2), and by (5) if

−λ0(λ0 − c) > ρ(λ0 − 2c) (case 1).

When λ0 < 2c, tools are too costly for the DM to ever want to carry both of them at once.

The same is true if they are cheap but the DM is sufficiently patient: While the full toolkit

may be attractive, more so is the information that only singletons can provide. If the tools are

sufficiently cheap, an impatient DM rents both and enjoys her constant expected payoff when

she is sufficiently unsure about the state; not appreciating the additional information, she is not

willing to give up the higher instant surplus to learn about the tools. Instead, a more patient

Figure 9: Observations and payoffs from choosing the complete toolkit, under imperfect monitoring.

24



DM is happy to stick to singletons for longer, due to their information value. Figure 10 is the

counterpart of Figure 2 under this alternative specification.

The evolution of beliefs under the strategy in Theorem 6 is similar to that under Theorems 2

and 3; the main difference is that now there is no learning from the complete toolkit. Thus, once

the DM chooses the full toolkit (optimally), she sticks to it thereupon.

5.4 Adding a Third Project

So far, the DM has only been given two projects or tools to choose from, each of which is

equally appealing in its corresponding state. One and only one of them is fruitful, and the only

problem is determining which one it is. In this section, we give the DM a third project she can

work on, or a third tool she can employ. If this third tool is productive, its arrival rate is higher

than that of the other two. But this new tool may be unproductive, while one of the original two

tools is certainly productive; this new project may never flourish, while one of the original two

eventually will. For simplicity, I assume that this third tool is “incompatible” with the other two

in the sense that it requires the full attention of the DM while she is employing it; and that it

must be forsaken once ignored or abandoned. Thus, the problem is to determine for how long

to experiment with the new tool, if at all, before switching to the original toolkit.

There are now three tools, X = {x0, x1, y}. The DM allocates her time between the different

subsets of {x0, x1} and {y}. Employing this new tool also involves a cost of cy > 0. There is a new

state of nature, θ ∈ {0, 1}, the realization of which is also unobserved; the new tool produces

successes at a rate λ1θ, where λ1 > λ0 is known. Thus, the DM knows that, if this new tool

proves successful, it is more appealing than any of the others; otherwise, she is better off with

the original toolkit.

Let μ ∈ [0, 1] denote the assessment of the DM that θ = 1; μ0 ∈ [0, 1] denotes the correspond-

ing prior. Representing separate tools, I assume that ω and θ are independent. Thus, since the

Figure 10: Objective-parameter space for a fixed ρ = ρ0. The colored portion of the graph represents the
parameter space for the problem. The yellow region represents expensive tools. The curve dividing the
green and blue regions represents the level curve of the threshold ρ0(λ0 − 2c) = λ0c. In the green region,
tools are cheap and the DM is impatient; in the blue region, the DM is patient instead.
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DM updates her beliefs about each state from different data, the posteriors are also independent.

In the event of an arrival from y, the posterior on θ jumps to 1; after spending a fraction γ ∈ [0, 1]

of time on y without observing any success, her posterior on θ gradually decreases according to

μ̇ = −γλ1μ(1 − μ). Immediate rewards are λ1μ − cy.

Under irreversibility, once the DM switches away from y, she is back to the problem analyzed

in previous sections; she divides her time among x0, x1, or both, according to the corresponding

optimal strategy, and she enjoys a continuation payoff of w0(π) if π is the posterior that ω = 0

at the time of switching. Thus, while she has not yet switched away from y, the new Bellman

equation is:

w(π, μ) = max
α∈[0,1]

{

αw0(π) + (1 − α)
[

λ1μ − cy +
λ1μ (w (π, 1) − w(π, μ)) − λ1μ(1 − μ)w′

2(π, μ)
ρ

]}

.

Consider a strategy such that, for each π ∈ [0, 1], there is some μ(π) ∈ [0, 1] such that the DM

starts employing tool y if μ ≥ μ(π), and follows the optimal strategy among {x0, x1} otherwise.

On the region of the state space where the DM experiments with y, we have:

w(π, μ) = λ1μ − cy +
λ1μ (w (π, 1) − w(π, μ)) − λ1μ(1 − μ)w′

2(π, μ)
ρ

.

By assumption, w (π, 1) = λ1 − cy. Thus, this equation is analogous to equation (2), and yields:

w(π, μ) = C(π)(1 − μ)ψ(μ)
ρ

λ1 + λ1μ − cy,

where C(∙) is some continuously differentiable function. The value-matching condition gives

w(π, μ(π)) = w0(π) for all π ∈ [0, 1]; the smooth-pasting condition is w′
2(π, μ(π)) = 0. Combin-

ing these two conditions gives:

μ(π) =
ρ

λ1

w0(π) + cy

λ1 + ρ − w0(π) − cy
,

and C(π) = λ1

λ1+ρ
ψ(μ(π))−

ρ

λ1 .

Theorem 7 (Third tool). The optimal strategy consists of starting on {y} provided that μ0 ≥ μ(π0), and

sticking to it while the posterior (π, μ) satisfies μ ≥ μ(π); if μ < μ(π), switch to the optimal strategy of

Theorem 3 on the toolkit {x0, x1}.

Figure 11 depicts the threshold μ(π) corresponding to the value function in Figure 5. If the

DM is sufficiently sure about ω, she has to be sufficiently confident that θ = 1 to start on tool y.

If she is unsure about ω, she employs tool y for a wider range of beliefs on θ: If she switches to

the original tools, she will rent both x0 and x1 at once and bear a high cost of experimentation.

While experimenting unsuccessfully on y, her beliefs about θ = 1 gradually decline. If a success
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Figure 11: Cutoff μ(π) corresponding to w0(π) in Figure 5; cy = c = 0.3. Above the cutoff, the optimal
strategy recommends {y}; below the cutoff, it recommends following the optimal strategy for {x0, x1}.

occurs before she switches, she learns that θ = 1, and sticks to y thereupon.

6 Conclusion

This paper analyzes the experimentation problem faced by a decision maker who can work

on up to two problems at once over time. One and only one of these can produce successes, but

the decision maker does not know ex-ante which one. To learn about the projects, she may work

on one at a time, exploiting their correlation, or on both at once, gathering more data.

If experimentation is cheap, or if she is sufficiently patient, the decision maker starts by

working on both projects at once if she is sufficiently uncertain about the state of nature; more

so if projects ignored or discarded can be scooped. Working on both projects at once, she can

identify the profitable one as soon as the first breakthrough occurs, learning nothing new in the

meantime — lack of success on both projects is a “neutral” event.

If she is sufficiently sure about a project, she starts working on it exclusively. As long as

she encounters no success, she becomes gradually pessimistic. Eventually, once she becomes

sufficiently unsure, she takes on the other project as well. Since bad news about one project is

good news about the other one, one might expect that the decision maker would switch from

one to the other after meeting with no successes. However, the lack of success leaves her unsure

about which project is better, rather than confident enough about the neglected project. At this

point, she works on both projects at once until her uncertainty is resolved.

If she does not have the option to work on more than one project simultaneously, the decision

maker works on individual projects for longer. If costs are high and the decision maker is

sufficiently impatient, she eventually gives up if there are no arrivals. In this case, the neglected

project is never given a chance: Before her posterior reaches a level where it would be optimal

to work on it, it reaches a level of uncertainty such that neither project is worth pursuing any
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further. In fact, such a decision maker never works on both projects at once even if she can.

When the projects cannot be “individually monitored” unless they are studied in isolation,

the only way for the decision maker to learn is to stick to singletons, and to test the alternatives

“on their own.” In this case, it is the impatient decision maker the one who works on both

projects at once when experimentation is cheap; she is not willing to give up the higher instant

surplus to learn about the state of nature.

The structure of the problem studied here is extremely simple. However, while some exten-

sions are feasible, such as allowing for “interior” states 0 < ω < ω < 1, the problem can become

intractable or far too cumbersome very quickly. Allowing for a richer set of states would be

interesting, but it requires expanding the dimensionality of the state space.13 The limitations in

this direction are substantial under the standard approach to control problems. Thus, for a richer

discrete-time problem in a similar vein, Francetich and Kreps (2014) explores heuristics.

Another interesting extension of the problem studied in this paper is the extension to strate-

gic experimentation. For example, imagine there are two agents experimenting simultaneously.

Would they ever want to experiment on both projects at once, if they can learn from each other?

If the alternatives are tools for rent from a hardware store, how should the store set the rental

costs, or auction off the tools? In the example of the professional-services firm, the manager of

the firm is a principal who learns about the dexterity or productivity of her employees. But these

employees may be agents who exert unobservable effort in their work. For failures to produce

breakthroughs to be informative of the state of nature, instead of being simply a reflection of

shirking, wages and compensations must incentivize the agents to work hard. How much effort

should the agents be induced to exert, and how should they be compensated for their effort?

This is the subject of ongoing work.
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A Proofs

Proof of Theorem 1. It is well known that the value function in Bayesian control problems is

convex (see Nyarko, 1994 for the discrete-time case). Since w(0) = w(1), convexity means that

w is U-shaped. Therefore, we can find 0 < π ≤ π < 1 such that w is non-increasing on [0, π],

constant on [π, π], and non-decreasing on [π, 1]. Higher values of π are good news for tool x0

and bad news for state x1. Thus, the non-increasing portion of w corresponds to beliefs that

recommend {x1}, while the non-decreasing region, to beliefs that recommend {x0}.

Lemma A1. The function w0 : [0, 1] → R in (3) is continuously differentiable, strictly decreasing below

πβ, and strictly increasing above πβ.

Proof. Continuous differentiability follows from value matching and smooth pasting. On
[
0, πβ

)
,

w0′(π) =
λ0cψ(πβ)

λ0 + ρ

(
ψ(π)
ψ(πβ)

)− ρ

λ0 λ0(1 − π) + ρ

λ0(1 − π)
− λ0

<
λ0cψ(πβ)

λ0 + ρ

λ0(1 − πβ) + ρ

λ0(1 − πβ)
− λ0 = 0.

Finally, on
(

πβ, 1
]
,

w0′(π) = −
λ0c

(λ0 + ρ)ψ(πβ)

(
ψ(π)

ψ(πβ)

) ρ

λ0
λ0π + ρ

λ0π
+ λ0

> −
λ0c

(λ0 + ρ)ψ(πβ)

λ0πβ + ρ

λ0πβ
+ λ0 = 0.
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This concludes the proof.

Proof of Theorem 2. Consider the case ρ(2c − λ0) > λ0(λ0 − c). We want to verify that w0 in (3)

solves the Bellman equation. To this end, define:

R0
w0(π) : = λ0π − c +

λ0π
[
λ0 − c − w0(π)

]
− λ0π(1 − π)w0′(π)

ρ
;

R1
w0(π) : = λ0(1 − π) − c +

λ0(1 − π)
[
λ0 − c − w0(π)

]
+ λ0π(1 − π)w0′(π)

ρ
.

We must check the following conditions:

1. On
[
0, πβ

)
, R1

w0(π) > max
{

R0
w0(π), 0

}
;

2. On
(

πβ, πβ
)

, 0 > max
{

R0
w0(π), R1

w0(π)
}

;

3. Finally, on
(

πβ, 1
]
, R0

w0(π) > max
{

R1
w0(π), 0

}
.

Start with π ∈ (0, πβ). Using (1), we can write R1
w0(π) − R0

w0(π) as:

R1
w0(π) − R0

w0(π) = λ0(1 − 2π) +
λ0(1 − 2π)

[
λ0 − c − w0(π)

]
+ 2λ0π(1 − π)w0′(π)

ρ

= λ0 −
(λ0 + 2ρ)

[
λ0 − c − w0(π)

]

ρ

> λ0 −
(λ0 + 2ρ)

[
λ0 − c − w0(πβ)

]

ρ

= λ0 −
(λ0 + 2ρ)

ρ
(λ0 − c) > 0,

where the first strict inequality follows from the fact that w0 is strictly decreasing on [0, πβ).

Similarly,

R1
w0(π) = λ0(1 − π) − c +

λ0(1 − π)
[
λ0 − c − w0(π)

]
+ λ0π(1 − π)w0′(π)

ρ

= λ0(1 − π) − c − [λ0 − c − w0(π)] + λ0π

= w0(π) > w0(πβ) = 0.

Next, consider π ∈
(

πβ, πβ
)

. In this region, w0(π) = w0′(π) = 0. Now,

R0
w0(π) = λ0π

(
ρ + λ0 − c

ρ

)

− c < λ0πβ

(
ρ + λ0 − c

ρ

)

− c = 0;

R1
w0(π) = λ0(1 − π)

(
ρ + λ0 − c

ρ

)

− c < λ0
(

1 − πβ
)(ρ + λ0 − c

ρ

)

− c = 0.
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Finally, for π ∈
(

πβ, 1
]
, using (2), we have:

R0
w0(π) − R1

w0(π) = λ0(2π − 1) +
λ0(2π − 1)

[
λ0 − c − w0(π)

]
− 2λ0π(1 − π)w0′(π)

ρ

= λ0 −
λ0 + 2ρ

ρ

[
λ0 − c − w0(π)

]

> λ0 −
λ0 + 2ρ

ρ

[
λ0 − c − w0

(
πβ
)]

= λ0 −
(λ0 + 2ρ)

ρ
(λ0 − c) > 0,

where the (first) strict inequality follows because w0 is strictly increasing on this region; and:

R0
w0(π) = λ0π − c +

−ρ(λ0 − c − w0(π)) + λ0ρ(1 − π)
ρ

= w0(π) > w0
(

πβ
)

= 0.

The proof that w0 in (4) solves the Bellman equation, corresponding to the case ρ(2c − λ0) ≤

λ0(λ0 − c), is analogous; the details are omitted. In this case, the DM cannot profit from giving

up, as w0(π) ≥ w0(1/2) ≥ 0 if ρ(2c − λ0) ≤ λ0(λ0 − c).

Proof of Theorem 3. Consider the case λ0(λ0 − c) > ρ(2c − λ0). To verify w0 in (7) solves the

Bellman equation, define:

R2
w0(π) : = λ0 − 2c +

λ0
[
λ0 − c − w0(π)

]

ρ
.

By assumption, R2
w0(π) > 0 for all π ∈ [0, 1]. We must check that:

1. On (0, π∗), R1
w0(π) − R0

w0(π) > 0 and R1
w0(π) − R2

w0(π) > 0.

2. On (π∗, π∗), R2
w0(π) − R0

w0(π) > 0 and R2
w0(π) − R1

w0(π) > 0.

3. Finally, on (π∗, 1), R0
w0(π) − R1

w0(π) > 0 and R0
w0(π) − R2

w0(π) > 0.

Start with π ∈ (0, π∗). The first inequality in 1 is established in the same way as in the proof of

Theorem 2. As for the second,

R1
w0(π) − R2

w0(π) = c −
(λ0 + ρ)

[
λ0 − c − w0(π)

]

ρ
> c −

(λ0 + ρ)
[
λ0 − c − w0(π∗)

]

ρ
= 0.

Next, take π ∈ (π∗, π∗). Now,

R2
w0(π) − R0

w0(π) = λ0(1 − π)
λ0 + ρ + c

λ0 + ρ
− c > λ0(1 − π∗)

λ0 + ρ + c
λ0 + ρ

− c = 0;

R2
w0(π) − R1

w0(π) = λ0π
λ0 + ρ + c

λ0 + ρ
− c > λ0π∗ λ0 + ρ + c

λ0 + ρ
− c = 0.
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As for the second inequality in 3,

R0
w0(π) − R2

w0(π) = −[λ0(1 − π) − c] −
λ0(1 − π)

[
λ0 − c − w0(π)

]
+ λ0π(1 − π)w0′(π)

ρ

= c −
(λ0 + ρ)

[
λ0 − c − w0(π)

]

ρ

> c −
(λ0 + ρ)

[
λ0 − c − w0(π∗)

]

ρ
= 0.

In the case where λ0(λ0 − c) ≤ ρ(2c − λ0), it remains to check that the DM cannot profit

by choosing the (now available) complete toolkit. This holds because (2c − λ0)ρ ≥ λ0(λ0 − c)

implies that λ0 − c − ρc
λ0+ρ

≤ 0.

Lemma A2. The function w0 : [0, 1] → R given in (11) is continuously differentiable and satisfies

w0′(π) < λ0(c1−c0)
λ0+ρ

on [0, π∗) and w0′(π) > λ0(c1−c0)
λ0+ρ

on (π∗, 1].

Proof. Continuous differentiability follows from value matching and smooth pasting. On [0, π∗),

w0′(π) =
λ0c0ψ(π∗)

λ0 + ρ

(
ψ(π)
ψ(π∗)

)− ρ

λ0
(

1 +
ρ

λ0(1 − π)

)

− λ0

<
λ0c0ψ(π∗)

λ0 + ρ

(

1 +
ρ

λ0(1 − π∗)

)

− λ0 =
λ0(c1 − c0)

λ0 + ρ
;

on (π∗, 1],

w0′(π) = −
λ0c1

(λ0 + ρ)ψ(π∗)

(
ψ(π)
ψ(π∗)

) ρ

λ0 (
1 +

ρ

λ0π

)
+ λ0

> −
λ0c1

(λ0 + ρ)ψ(π∗)

(
1 +

ρ

λ0π∗

)
+ λ0 =

λ0(c1 − c0)
λ0 + ρ

.

This concludes the proof.

Proof of Theorem 4. Start with the portion of theorem regarding the counterpart of Theorem 3.

Some special care needs to be taken compared to the argument behind Theorem 3, as the value

function is non-monotonic on (π∗, 1]. Define:

R0
w0(π) : = λ0π − c0 +

λ0π
[
λ0 − c0 − w0(π)

]
− λ0π(1 − π)w0′(π)

ρ
;

R1
w0(π) : = λ0(1 − π) − c1 +

λ0(1 − π)
[
λ0 − c1 − w0(π)

]
+ λ0π(1 − π)w0′(π)

ρ
;

R2
w0(π) : = λ0 − c0 − c1 +

λ0
[
λ0 − c1 − π(c0 − c1) − w0(π)

]

ρ
.

We must check the following conditions:
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1. On [0, π∗), R1
w0(π) − R0

w0(π) > 0 and R2
w0(π) − R1

w0(π) < 0.

2. On (π∗, 1], R1
w0(π) − R0

w0(π) < 0 and R2
w0(π) − R0

w0(π) < 0.

3. Finally, on (π∗, π∗), R2
w0(π) − R0

w0(π) > 0 and R2
w0(π) − R1

w0(π) > 0.

Start with π ∈ (0, π∗); the counterpart of (1) is

−λ0π(1 − π)w0′(π) + [λ0(1 − π) + ρ]w0(π) = λ0(1 − π)(ρ + λ0 − c1) − ρc1.

Proceeding as in the symmetric case, we can write:

R1
w0(π) − R0

w0(π) = λ0 + c0 + c1 −
(λ0 + 2ρ)

[
λ0 − w0(π)

]

ρ
+

λ0c1 + λ0π(c0 − c1)
ρ

.

By Lemma A2, as c0 > c1, the right-hand side of the equation above is strictly decreasing in π

(despite the last term being strictly increasing in π). In this case,

R1
w0(π) − R0

w0(π) > λ0 + c0 + c1 −
(λ0 + 2ρ)

[
λ0 − w0(π∗)

]

ρ
+

λ0c1 + λ0π∗(c0 − c1)
ρ

= w0(π∗);

by assumption, w0(π∗) > 0. Next, take:

R1
w0(π) − R2

w0(π) = c0 −
(λ0 + ρ)(λ0 − c1 − w0(π)) − λ0π(c0 − c1)

ρ
.

From Lemma A2, it follows that the right-hand side is strictly decreasing in π. Thus,

R1
w0(π) − R2

w0(π) > c0 −
(λ0 + ρ)(λ0 − c1 − w0(π)) − λ0π(c0 − c1)

ρ
= 0.

Next, consider π ∈ (π∗, π∗). Here, we have:

R2
w0(π) − R0

w0(π) = λ0(1 − π)
λ0 + ρ + c0

λ0 + ρ
− c1

> λ0(1 − π∗)
λ0 + ρ + c0

λ0 + ρ
− c1 = 0;

R2
w0(π) − R1

w0(π) = λ0 λ0 + ρ + c1

λ0 + ρ
π − c0

> λ0 λ0 + ρ + c1

λ0 + ρ
π∗ − c0 = 0.

Finally, take π ∈ (π∗, 1]; (2) is now λ0π(1 − π)w′(π) + (ρ + λ0π)w(π) = λ0π(ρ + λ0 − c0)− ρc0.

We have:

R0
w0(π) − R1

w0(π) = λ0 + c0 − c1 −
λ0 + 2ρ

ρ
[λ0 − c1 − w0(π)] +

λ0(c0 − c1)
ρ

π.
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Unlike in the symmetric case, this expression is not monotonic over the range (π∗, 1]. However,

if w0 denotes the minimum of w0, we have:

R0
w0(π) − R1

w0(π) > λ0 + c0 − c1 −
λ0 + 2ρ

ρ
[λ0 − c1 − w0] +

λ0(c0 − c1)
ρ

π∗;

by assumption, this last expression is non-negative. As for R0
w0(π) − R1

w0(π), we have:

R0
w0(π) − R2

w0(π) = c0 −
ρ + λ0

λ0 (λ0 − c1 − w0(π)) +
λ0

ρ
(c0 − c1)π.

By Lemma A2, this expression is indeed strictly increasing in π; hence,

R0
w0(π) − R2

w0(π) > c0 −
ρ + λ0

λ0 (λ0 − c1 − w0(π∗)) +
λ0

ρ
(c0 − c1)π∗ = 0.

For the portion of the proof corresponding to the statement about Theorem 2, it remains to

check that R1
w0(π) > 0 on [0, πβ), that R0

w0(π) > 0 on (πβ, πβ), and that R0
w0(π), R1

w0(π) < 0 on

(πβ, 1]. The argument here is completely analogous to the symmetric case, since the regions on

which the value function is strictly decreasing, constant, and strictly increasing, correspond to

the ranges over which the strategy recommends choosing {x1}, ∅, and {x0}, respectively. The

details are omitted.

Lemma A3. There exists a unique πr ∈
(

0, min
{

πβ, πβ
})

such that:

λ0c
λ0 + ρ

πr



 ψ(πr)

ψ
(

max
{

πβ, πβ
})





− ρ

λ0

+ λ0(1 − πr) − c = λ0 − c −
ρc

λ0 + ρ
;

similarly, there exists a unique πr ∈
(

max
{

πβ, πβ
})

, 1 such that:

λ0c
λ0 + ρ

(1 − πr)



 ψ(πr)

ψ
(

min
{

πβ, πβ
})





ρ

λ0

+ λ0πr − c = λ0 − c −
ρc

λ0 + ρ
.

Proof. Consider the case ρ(2c − λ0) ≤ λ0(λ0 − c); the other case is handled analogously. Define

the following function h : [0, 1] → R, given by:

h(x) :=
λ0c

λ0 + ρ
x

(
ψ(x)

ψ
(
πβ
)

)− ρ

λ0

+ λ0(1 − x) − c − (λ0 − c) +
ρc

λ0 + ρ
.

By Lemma A1, h is differentiable and strictly decreasing on
[
0, πβ

)
. Moreover, this function
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satisfies:

h(0) =
ρc

λ0 + ρ
> 0;

h
(

πβ
)

<
λ0c

λ0 + ρ
πβ + λ0πβ − c − (λ0 − c) +

ρc
λ0 + ρ

= 0.

Thus, there exists a unique x∗ ∈
(

0, πβ
)

such that h(x∗) = 0. A similar argument as above

establishes that there exists a unique x∗∗ ∈
(
πβ, 1

)
such that g(x∗∗) = 0, where g : [0, 1] → R is

given by:

g(x) :=
λ0c

λ0 + ρ
(1 − x)



 ψ(x)

ψ
(

πβ
)





ρ

λ0

+ λ0x − c − (λ0 − c) +
ρc

λ0 + ρ
.

Set πr = x∗ and πr = x∗∗.

Proof of Theorem 5. There is nothing to show if the feasible set is the empty set. The portions of

the theorem corresponding to singletons being the feasible sets follow as in the proof of Theorem

2. (The only difference is that, here, we do not need to worry about having πβ < πβ; the two

cutoffs apply to different states.) As for the last two cases, it suffices to compare the value

functions in (7) and (3) to the value corresponding to the complete toolkit. Start with the case

ρ(2c − λ0) ≤ λ0(λ0 − c). We have π∗ > πβ; thus, on [0, πβ], w0(π) − (λ0 − c) + ρc
λ0+ρ

= h(π),

where h is as in the proof of Lemma A3. Thus, for all π < πr, w0(π) > λ0 − c − ρc
λ0+ρ

. Similarly,

on [πβ, 1], we have w0(π) − (λ0 − c) + ρc
λ0+ρ

= g(π), and (the proof of) Lemma A3 establishes

that w0(π) > λ0 − c − ρc
λ0+ρ

for all π > πr. Finally, if λ0(λ0 − c) < ρ(2c − λ0), the desired result

follows from the fact that λ0 − c − ρc
λ0+ρ

< 0.

Proof of Theorem 6. Consider a cutoff strategy of the same form as in the beginning of Section

4. We have the same differential equation as before. The new (VM) conditions are w(π) =

λ0 − 2c = w(π). These conditions lead to

C1 = C1(π) :=
λ0π − c

π
ψ(π)

ρ

λ0 , C0 = C0(π) :=
λ0(1 − π) − c

(1 − π)
ψ(π)−

ρ

λ0 ,

π = λ0+ρ
ρ+c

c
λ0 ∈ (0, 1), and π = 1− π. We have π > π if and only if ρ(λ0 − 2c) > λ0c. The solution

candidate in this case is:

w0(π) =






λ0(λ0−c)
λ0+ρ

π
(

ψ(π)
ψ(π)

)− ρ

λ0
+ λ0(1 − π) − c π ∈ [0, π);

λ0 − 2c π ∈ [π, π];
λ0(λ0−c)

λ0+ρ
(1 − π)

(
ψ(π)
ψ(π)

) ρ

λ0
+ λ0π − c π ∈ (π, 1].

The proof that this function solves the Bellman equation is entirely analogous to the correspond-

ing proof in Theorem 3. The argument for the case ρ(λ0 − 2c) ≤ λ0c is analogous to the argument
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behind Theorem 2; notice that:

w0
(

1
2

)

=
λ0(ρ + λ0 − c) − 2ρc

λ0 + 2ρ
≥ λ0 − 2c

if and only if −λ0(λ0 − c) ≤ ρ(λ0 − 2c) ≤ λ0c, and w0(1/2) < 0 if and only if −λ0(λ0 − c) >

ρ(λ0 − 2c).

Proof of Theorem 7. The value function is:

w(π, μ) =






w0(π) μ < μ(π);

λ1

λ1+ρ
(1 − μ)

(
ψ(μ)

ψ(μ(π))

) ρ

λ1
+ λ1μ − cy μ ≥ μ(π).

Fix π ∈ [0, 1]. By the same argument as in Lemma A1, w(π, μ) is strictly increasing in μ on

[μ(π), 1], and attains the value w0(π) at μ = μ(π). Thus, this function attains the maximum in

the Bellman equation.
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