Can Decision Biases Increase with the Stakes?
Field Evidence of Impact Aversion*

Etan Green David P. Daniels
Stanford University

September 9, 2014

Abstract
This paper tests the proposition that high stakes reduce decision biases by analyzing over a million decisions made by Major League Baseball umpires. Even though MLB directs and incentivizes umpires to apply a consistent decision rule, we find that every umpire reveals an aversion to options that would more strongly change the expected outcome of the game. We model umpires as wanting to make the correct choice, but also wanting to avoid making a mistake that would prove consequential to the outcome of the game. When the correct option is not obvious, the umpire will shade away from options that represent greater departures from the current state. This impact aversion represents both a decision bias and an agency failure, and it results in distortions that increase with the stakes.

*Please direct all correspondence to eagreen@stanford.edu. The authors wish to thank Doug Bernheim, Nir Halevy, Dorothy Kronick, Jonathan Levav, Max Mishkin, Muriel Niederle, Roger Noll, Justin Rao, Peter Reiss, Al Roth, and Charlie Sprenger for helpful comments and suggestions on previous drafts. Green and Daniels also thank the Stanford University Graduate School of Business and a National Science Foundation Graduate Research Fellowship, respectively, for generous financial support. Previous versions of this paper were presented at the 2014 MIT Sloan Sports Analytics Conference in Boston and the 2014 Behavioral Decision Research in Management Conference in London. Earlier versions of this paper, under various titles, date to February, 2014.
1 Introduction

High stakes are thought to reduce decision biases (List, 2003; Hart, 2005; Levitt and List, 2008). We test this proposition by analyzing over a million decisions made by home plate umpires in Major League Baseball. Even though MLB directs and incentivizes umpires to apply a consistent decision rule, every umpire reveals an aversion to options that more strongly change the expected outcome of the game. This behavior represents both a decision bias and an agency failure, and it results in distortions that increase with the stakes.

Major League Baseball directs umpires to make a binary choice, ball or strike, according to a single, objective criterion: the location of the pitch. But umpires also face pressure from players, fans, and the media to avoid making mistakes that greatly influence which team wins. We model umpires as wanting to make the correct choice but also wanting to avoid making a mistake that would prove consequential to the outcome of the game. Such a model predicts that umpires select the correct option when it is obvious and shade away from the more consequential option when the correct option is not obvious. We call this behavior impact aversion, which we define as an aversion to options that more strongly change the current expected outcome. We structurally estimate our model’s coefficient of impact aversion separately for each umpire (allowing for impact neutrality or impact seeking), and we find that every umpire in our sample is impact averse.

To illustrate the high degree of impact aversion among umpires, consider a situation in which both of the umpire’s options are equally pivotal, or have symmetric impacts on the expected outcome of the game, and the umpire is indifferent between them, selecting balls and strikes 50% of the time. When the situation changes such that the impacts of those options become asymmetric, the umpire will now distort his decisions by choosing the more pivotal option as much as 25 percentage points less frequently, selecting the more pivotal option only 25% of the time and the less pivotal option 75% of the time. More generally,
greater asymmetries in the impacts of the umpire’s options induce more bias towards the less pivotal option. The most important decisions—those in which the umpire can dramatically change the expected outcome of the game—are typically characterized by large asymmetries in the impacts of the umpire’s options. Hence, the most important decisions induce the most frequent violations of MLB’s directive.

Critiques of behavioral economics have conjectured that high stakes will reduce biases, especially in settings characterized by experienced agents and intense competition (e.g. Levitt and List, 2008). In our setting, impact aversion provides a counterexample to this claim, since it distorts high-stakes decisions by professionals in the field. Thus, this paper relates to a growing body of field studies that identifies systematic ways in which individuals violate standard economic assumptions (for a review, see DellaVigna, 2009), even in settings characterized by experienced agents, intense competition, and high stakes (e.g. Northcraft and Neale, 1987; Berger and Pope, 2011; Pope and Simonsohn, 2011; Pope and Schweitzer, 2011). However, impact aversion not only distorts high-stakes decisions; it induces greater distortions as the stakes become more asymmetric. This suggests that some decision biases may actually grow in importance as the stakes increase.¹

In our setting, impact aversion is inconsistent with the predictions of simple agency models in which incentives align the actions of the agent with the goals of the principal (Laffont and Martimort, 2002). Major League Baseball directs umpires to call balls and strikes based solely on the location of the pitch. An impact averse umpire will call pitches at the same location differently depending on how a ball or a strike would change the expected outcome of the game. Umpires exhibit impact aversion despite strong incentives to follow the league’s directive. MLB uses cameras to monitor umpires’ adherence to its directive.

¹Experimental evidence has shown that in some circumstances, greater monetary incentives produce more bias (for a review, see Camerer and Hogarth, 1999), such as when they cause the participant to “choke” (Ariely, Gneezy, Loewenstein and Mazar, 2009). By contrast, we show that fixed incentives can produce increasing bias in the stakes of the decision.
and withholds lucrative postseason assignments from the most impact averse umpires, as we show in Section 4.3. Empirical documentations of such (ir)regularities are rare in principal-agent contexts, because it is typically hard to observe what the agent is contracted to do or what she actually does (Prendergast, 1999). These difficulties are greatly mitigated in our context.2

We argue that umpires violate the league’s directive because they face contravening pressures from other sources (e.g. Myerson, 1982; Holmstrom and Milgrom, 1991; Kamenica, 2012). As we show in Section 3.6, impact aversion is stronger when umpires face greater scrutiny from fans and the media. When a game has high attendance or when it is broadcast nationally and in primetime, umpires become even more averse to the option that would more strongly change the expected outcome of the game. The more visible the game, the more invisible the umpire tries to become. As we discuss in Section 2.2, umpires face public criticism after making mistakes that greatly influence important outcomes. This threat of public criticism appears to bias umpires’ decisions in favor of the less consequential option.

Impact aversion is distinct from other biases previously documented in the psychology and economics literatures. Impact averse decision-makers display an aversion to more consequential options. This distinguishes impact aversion from a class of decision biases in which individuals avoid making consequential decisions, including status quo bias (Samuelson and Zeckhauser, 1988; Choi, Laibson, Madrian and Metrick, 2003; Johnson and Goldstein, 2003), omission bias (Ritov and Baron, 1992; Schweitzer, 1994), and choice deferral (Tversky and Shafir, 1992); see Anderson (2003) for a review.3 Active choice, or requiring individuals to make a decision, has been found to reduce these decision avoidance biases (Carroll, Choi, 2

2Bertrand and Mullainathan (2001) document contracting failures in which the goodness of the agent’s actions is hard for the principal to evaluate. By contrast, we document contracting failures even in the presence of state-of-the-art monitoring technology that enables near-perfect evaluation of agent decisions by the principal.

3Though some experiments document evidence of action bias, or a bias towards making consequential decisions, other experiments show that omission bias is more prevalent than action bias (Baron and Ritov, 2004).
Laibson, Madrian and Metrick, 2009; Keller, Harlam, Loewenstein and Volpp, 2011; Schrift and Parker, 2014). However, umpires display impact aversion even under active choice.\footnote{Our findings suggest that active choice does reduce impact aversion. Choosing a strike is more “active” than choosing a ball, in the sense that an arm motion signals a strike (and a full-body motion signals a third strike), whereas no motion signals a ball. Our main finding is that umpires shade towards balls when a strike would be more pivotal, and they shade towards strikes when a ball would be more pivotal. But they shade \textit{more} towards balls when a strike would be more pivotal than they shade towards strikes when a ball would be more pivotal.}

Impact aversion is not well described by standard economic models of decision-making under risk. Arbitrators receive positive utility for making a correct choice and negative utility for making an incorrect choice; impact averse arbitrators receive greater disutility when a mistake would prove consequential. This asymmetry presents an unusual case of risk aversion, in which the utility curve is kinked at a reference point that divides correct and incorrect decisions.\footnote{In a similar paper, Romer (2006) shows that coaches in the National Football League avoid options that increase the likelihood of winning in expectation, but may result in large decreases in that probability. “The natural possibility,” Romer writes, “is that the actors care not just about winning and losing, but about the probability of winning during the game, and that they are risk-averse over this probability. That is, they may value decreases in the chances of winning from failed gambles and increases from successful gambles asymmetrically.” Risk aversion applies naturally to actors whose utility is function of a continuous and positive outcome, like the probability of winning during the game. However, risk aversion sits more uneasily with actors whose utility is a function of a binary and opposing outcome, like making the correct or incorrect choice.} Kinked utility at a reference point is characteristic of loss aversion (Kahneman and Tversky, 1979), but loss aversion differs from impact aversion in two important ways. In loss aversion, a variable reference point determines what is coded as a gain and what is coded as a loss, whereas in impact aversion, a correct decision is always coded as a gain, and an incorrect decision is always coded as a loss. Second, the degree of loss aversion, defined as the ratio of the slopes of the utilities for losses and gains, is presumed to be exogenous to the model and is often estimated to be about 2.25 (Tversky and Kahneman, 1991). By contrast, the relative impacts of the decision-maker’s options, which are endogenous to the model, determine the degree of impact aversion she displays. In impact aversion, the reference point is fixed, and the disutility of a loss is variable.
empirical literature. Studies in sports settings have documented evidence of player favoritism by arbitrators (Sutter and Kocher, 2004; Zitzewitz, 2006; Price and Wolfers, 2010; Parsons, Sulaeman, Yates and Hamermesh, 2011; Mills, 2013; Kim and King, 2014; Zitzewitz, 2014). In contrast, an impact averse arbitrator will favor particular choices, not particular players. A notable exception is the finding by Price, Remer and Stone (2012) that professional basketball referees favor choices that are more profitable for the league. However, it is unlikely that impact aversion is a manifestation of profit-seeking by Major League Baseball.\footnote{It is unlikely that MLB, contrary to its stated goal, directive, and incentives, condones impact aversion. In addition to our evidence that MLB punishes umpires for impact aversion, it is not clear that impact aversion would be desirable for the league. Impact aversion likely prolongs games (by reducing strike-outs at a higher rate than walks), and MLB began taking steps to shorten games just before our observation window (Bloom, 2008).} External incentives to appear evenhanded motivate labor arbitrators to violate their directive (Bloom and Cavanagh, 1986; Klement and Neeman, 2013); by contrast, a desire to appear “invisible” appears to motivate impact aversion. Much of the empirical literature on judicial decision making focuses on how the political ideology of the judge influences her rulings (e.g. Epstein, Landes and Posner, 2011). Recent evidence shows that judges display decision biases as well: experienced parole judges become discontinuously more likely to grant merciful rulings after food breaks (Danziger, Levav and Avnaim-Pesso, 2011). Although impact aversion is a decision bias, it depends on the options presented to the arbitrator rather than on the arbitrator’s internal state.

The remainder of the paper is organized as follows. Section 2 describes the directive and incentives faced by umpires. Section 3 presents evidence of impact aversion from non-parametric and semi-parametric analyses. Section 4 proposes and estimates a model of impact aversion and demonstrates that every umpire in our sample is impact averse. Section 5 incorporates second-order risk aversion into the model, which predicts that impact aversion will increase when decisions are more difficult; we then present evidence consistent with this prediction using three measures of difficulty. Section 6 estimates the economic significance of
impact aversion among umpires. Section 7 concludes, discussing how judges may be impact averse as well.

2 Background

2.1 The Strike Zone

Most plays in baseball begin with the pitcher throwing a pitch to the batter. When the batter chooses not to swing, the home plate umpire makes a call—either a ball or a strike. The home plate umpire has a simple job: to decide whether the pitch intersects the strike zone. Pitches that intersect the strike zone should be called strikes; pitches that do not intersect the strike zone should be called balls.

There are two strike zone definitions of interest. The first is the official strike zone, which Major League Baseball defines as “that area over home plate the upper limit of which is a horizontal line at the midpoint between the top of the shoulders and the top of the uniform pants, and the lower level is a line at the hollow beneath the kneecap.” The second is the enforced strike zone, which varies from umpire to umpire. Conventional wisdom that MLB tolerates small deviations between the official strike and an umpire’s enforced strike zone so long as the umpire enforces his strike zone consistently (Sullivan, 2001). We find evidence in the data in support of this claim. As we show in Section 4.3, umpires that are more self-consistent in their calls are more likely to receive lucrative playoff assignments, but umpires that are more correct in their calls vis-a-vis the official strike zone are not more likely to receive those assignments. Accordingly, we evaluate umpires on their self-consistency, not on their correctness.

2.2 Formal incentives

Deviations between enforced strike zones and the official strike zone have not always been small. As recently as the 1990s, pitches far beyond the side of home plate—that hitters would have to lunge for—were often called strikes, while high strikes—over the plate and above the hitter’s belt—were almost always called balls. Major League Baseball could not remedy the problem by rewarding the least egregious violators, because the umpires union mandated that all umpires split both postseason assignments and the extra pay—as much as half an umpire’s base salary over the entire postseason—equally among all umpires (Callahan, 1998).

In 1999, MLB initiated three small measures aimed at reducing discrepancies between enforced strike zones and the official strike zone: first, reminding all umpires of the definition of the official strike zone; second, instructing team officials to monitor each umpire’s enforced strike zone; and third, suspending an umpire who physically confronted a player—the first suspension ever given to an umpire. A clumsy response by the umpires union paved the way for baseball to strengthen the formal incentives faced by umpires. First, the union authorized a strike. Then, when it realized that its contract with MLB forbade a strike, the union tried to dissolve itself—convincing 57 of the 66 union umpires to resign—so as to negotiate a new contract. When a federal court ruled the attempted dissolution null and void, Major League Baseball accepted the resignations of 22 umpires and hired 30 new umpires (Callan, 2012).

Home plate umpires in Major League Baseball now operate under a high degree of monitoring, incentives for good performance, possible punishment for poor performance, considerable training, and stringent screening. MLB employs over a dozen officials to monitor and evaluate umpire performance. Most games are overseen in person by a representative from the league, who files a report detailing blown calls. The league uses pitch-tracking technology to evaluate the calls of home plate umpires. In the early 2000s, MLB installed the QuesTec system in half of its stadiums, which tracked the location of each pitch as it crossed the region above home plate. Prior to the 2009 season, MLB installed the more
accurate PITCH F/X system in every park, which captures the location of each pitch 20 times along its trajectory. After each game, the home-plate umpire receives a breakdown of his performance, including a score that measures the consistency of his calls with the official strike zone (Drellich, 2012).

Rewards and discipline are closely tied to performance. Umpires are evaluated twice each season; evaluations are based on reports from umpire observers and analysis of the camera data. MLB claims that the best umpires are assigned to postseason games, and our analysis in Section 4.3 supports this claim. “There have been situations where umpires have been disciplined” as a result of poor evaluations, according to Joe Torre, the Executive Vice President of Baseball Operations (Callan, 2012). After the 2009 season, baseball fired three of its umpire observers after a number of important missed calls during the postseason (Nightengale, 2010). Since 2000, a handful of umpires have been suspended for inappropriate confrontations with players and managers. In 2013, baseball suspended a home plate umpire for forgetting a rule (Hoffman, 2013).

Selection of Major League umpires is stringent and performance-based. To become a major league umpire, a candidate must attend umpire schools, graduate in the top fifth of his class, and then rise through four levels of the minor leagues before qualifying to fill in for a major league umpire on vacation (Caple, 2011). MLB employs 70 full-time umpires at any one time and 8 to 12 fill-ins from the minor leagues. Typically, only one fill-in is hired as a full-time MLB umpire after each season (O’Connell, 2007).

2.3 Other motivations

Umpires also face pressure from players, fans, and the media—the threat of public criticism—to avoid making mistakes that greatly influence important outcomes. In 2010, umpire Jim Joyce’s erroneous safe call at first base thwarted what would have been only the 21st perfect game in baseball history. “He simply called the play as he saw it,” said The New York
Times. “The problem, of course, is that Joyce’s decision is easily the most egregious blown call in baseball over the last 25 years.” After watching the replay, Joyce told reporters, “I just cost that kid a perfect game...It was the biggest call of my career” (Kepner, 2010).

Influential decisions often attract negative publicity even when it is not clear ex post that the decision was mistaken. In 1972, the home plate umpire Bruce Froemming broke up Milt Pappas’ bid for a perfect game by calling ball four on a full-count pitch with two outs in the ninth inning. During Froemming’s final season 35 years later, Pappas, still fuming, told ESPN that the last two pitches “were strikes or ‘that close’ to being strikes that he should’ve raised his right hand (to signal a strike)” (Weinbaum, 2007).

Umpires display greater impact aversion when the game has higher attendance or is broadcast to a wider audience, as we show in Section 3.6, suggesting that umpires respond to incentives from fans and the media.

2.4 Data and descriptives

Umpires are supposed to call balls and strikes based solely on the location of the pitch. We measure umpires’ adherence to this normative benchmark with precise pitch location data from the PITCH F/X cameras—the same system used to monitor the calls of home plate umpires. We define the location of the pitch by its coordinates when it intersects the plane rising from the front of home plate, on which the official strike zone is defined. The PITCH F/X system also provides estimates of the top and bottom borders of the official strike zone based on the batter’s stance prior to each pitch. We use these measurements to normalize the vertical location of the pitch. We merge pitch location data from MLB.com with pitch and game data from Retrosheet.org, including the number of balls and strikes in the count.

8 About 1% of pitches are not captured by the cameras.

9 While the width of the official strike zone is fixed, the height of the official strike zone varies with the height and stance of the batter. According to Major League Baseball, “The strike zone shall be determined from the batter’s stance as the batter is prepared to swing at a pitched ball.” http://mlb.mlb.com/mlb/official_info/umpires/rules_interest.jsp
the number of outs, whether there is a runner on each base, the identity of the home plate umpire, and the game’s start time and attendance.

Our data comprise every pitch recorded by the cameras during the 2009-11 regular seasons, over 2 million pitches. Umpires make calls on 53% of pitches in the sample. After eliminating the 47% of pitches that are swung at, the 13,000 balls that were thrown intentionally, and the 50,000 calls made by the 21 umpires who each make fewer than 7,500 calls during the window, our sample contains 1,036,355 calls made by 75 umpires. About two-thirds of calls are balls and the remaining third are called strikes. 6% of calls occur in three-ball counts, 19% of calls occur in two-strike counts, and 2% of calls occur in full counts (three balls and two strikes).\(^\text{10}\)

From our sample of over a million calls, we non-parametrically estimate the probability of a called strike conditional on the location of the pitch. Figure 1a shows this estimate of the enforced strike zone. The dotted lines denote the boundaries of the official strike zone—the width of home plate on the horizontal axis and the normalized distance from knees to chest on the vertical axis—on the plane that rises from the front of home plate. The umpire stands behind home plate and looks through the plane, over the catcher’s head, and towards the pitcher. A right-handed batter would stand to the umpire’s left. The contour lines denote \(\hat{m}(X)\): our estimate of the probability of a called strike conditional on \(X = (x_1, x_2)\), the location of the pitch. This estimate is the prediction from a kernel regression of an indicator for whether the call is a strike.\(^\text{11}\) Pitches that intersect the middle of the official strike zone are obvious strikes, and umpires call them strikes more than 90% of the time; pitches that

\(^{10}\)The count keeps track of the prior balls and strikes in the at-bat, or the sequence of consecutive pitches to the batter. Every at-bat begins with a count of zero balls and zero strikes. A ball is added when the umpire makes a ball call. A strike call is added when the umpire makes a strike call or when the batter swings—unless the count has two strikes and he makes contact with the pitch but does not put it in the field of play, in which case the count remains at two strikes. At-bats end most commonly when the batter swings and hits the pitch in the field of play, when the count reaches four balls, or when the count reaches three strikes.

\(^{11}\)We use a bivariate Gaussian kernel and Silverman’s rule of thumb bandwidth for each axis.
Figure 1: (a) $\hat{m}(X)$: the probability of a strike call when the batter does not swing, and (b) $\hat{f}(X)$: the distribution of calls. The dotted lines denote the boundaries of the official strike zone on the plane that rises from the front of home plate (seen from the umpire’s view). (a) Pitches that cross the plane in the middle of the official strike zone are almost always called strikes; those that cross well outside the official strike zone are almost always called balls. Pitches that cross near the boundaries of the official strike zone are sometimes called strikes and sometimes called balls. (b) Pitches along the bottom of the official strike zone comprise a disproportionate share of calls.

(a) $\hat{m}(X)$: Probability of a strike call

(b) $\hat{f}(X)$: Distribution of pitch locations for calls

cross far outside the official strike zone are obvious balls, and umpires call them balls more than 90% of the time. In between, pitches that intersect the plane at the same location are sometimes called strikes and sometimes called balls. This band of inconsistency is wide: more than half a foot separates pitches that are called strikes 90% of the time and those that are called strikes 10% of the time.\(^{12}\) Figure 1b shows $\hat{f}(X)$: our estimate of the distribution of calls by location.\(^{13}\) Since calls disproportionately cluster near the lower boundary of the official strike zone, the band of inconsistency plays an outsized role in determining the

\(^{12}\)The smoothing nature of the estimator may obscure a sharper boundary, though the bandwidth is small enough to minimize this concern.

\(^{13}\)For the density estimate, we also use a bivariate Gaussian kernel and Silverman’s rule of thumb bandwidth for each axis.
outcomes of pitches, at-bats, and even games.14

3 Evidence of Impact Aversion

3.1 Pivotal situations: non-parametric estimates

An umpire is \textit{inconsistent} if he makes different calls on pitches that cross the plane at the same location; an umpire is \textit{biased} if these differences correlate with normatively extraneous (non-location) factors. In baseball, the count tracks previous pitches in the at-bat, or the sequence of pitches between pitcher and batter. We first look for bias in two asymmetrically pivotal situations: when the count has three balls or two strikes. A fourth ball would end the at-bat by walking the batter; a third strike would end the at-bat by striking him out. Unless there are three balls and two strikes (a full count), the umpire can extend the at-bat by calling a strike to avoid a walk or by calling a ball to avoid a strike-out. The count should not influence an umpire’s calls. According to Peter Woodfork, who oversees umpires as MLB Senior Vice President for Baseball Operations, Major League Baseball “strives[s] to make sure [umpires] are consistent throughout all at-bats, no matter the count” (Baumbach, 2014).

To visualize bias for a particular situation, we plot the difference between two non-parametric estimates of the enforced strike zone, $\hat{m}(X|S) - \hat{m}(X|<3\text{ balls} \& <2\text{ strikes})$: the first estimated on a subset of pitches for which the situation S is true (e.g. 3 balls \& < 2 strikes), and the second estimated on pitches in baseline counts with fewer than three balls and fewer than two strikes. Since the situations we consider are extraneous to the location of the pitch, the two enforced strike zones should be identical, and their difference should be zero across the plane.

14The modal pitch location for all batters is the bottom outside corner. Hence, the bimodality in Figure 1b is a consequence of pooling right- and left-handed batters.
Figure 2: $\hat{m}(X|S) - \hat{m}(X|< 3 \text{ balls} \& < 2 \text{ strikes})$, for situation S listed in figure titles. The change in the probability of a called strike when the count has (a) three balls, (b) two strikes, and (c) three balls and two strikes (full counts). The baseline case comprises calls in counts with fewer than three balls and fewer than two strikes. The enforced strike zone expands in three-ball counts and contracts in two-strike counts, particularly at the top and bottom. In full counts, the enforced strike zone contracts more moderately than with just two strikes.
Instead, Figures 2a and 2b show dramatic changes in the enforced strike zone when the count has three balls (2a), and when the count has two strikes (2b). In both graphs, pitches in full counts are excluded from the underlying strike zone estimates. If the enforced strike zones are the same, their difference will be a flat plane at zero.\(^{15}\) In each graph, the difference is near zero in both the center of the official strike zone and far outside of it. Even in three-ball or two-strike counts, obvious strikes are still called strikes, and obvious balls are still called balls. But where calls are not obvious, umpires enforce different strike zones. In three-ball counts, Figure 2a shows that the probability of a strike increases along the band of inconsistency—the strike zone expands. In two-strike counts, Figure 2b shows that the probability of a strike decreases along the band of inconsistency—the strike zone contracts.\(^{16}\)

With three balls and fewer than two strikes, a ball would be more pivotal than a strike. Similarly, with two strikes and fewer than three balls, a strike ends the at-bat while a ball prolongs it. The expansion of the enforced strike zone in three-ball counts and the contraction of the strike zone in two-strike counts suggest that umpires are averse to making the more pivotal call. By this logic, full counts (three balls and two strikes) should induce an intermediate effect—either a smaller expansion of the enforced strike zone than with three balls, or a smaller contraction than with two strikes. Because the umpire cannot avoid a pivotal call in a full count, he will distort the strike zone less than when he chooses between

\(^{15}\)To attain a smoothed measure of the difference, we estimate each non-parametric strike zone using the maximum bandwidth along each axis across the two plots.

\(^{16}\)Baseball commentators have previously shown that the enforced strike zone expands in three-ball counts and contracts in two-strike counts. For instance, see Moskowitz and Wertheim (2011) or Carruth (2012). Our findings go beyond these in at least seven ways. First, we measure the extent of the biases non-parametrically, semi-parametrically, and structurally. Second, we show that the bias represents an aversion to changing the expected outcome of the game, not to ending the at-bat as has been thought. Third, we show that impact aversion is stronger when umpires are subject to greater scrutiny from fans and the media, suggesting that the bias is a response to the threat of public criticism. Fourth, we show that every umpire exhibits impact aversion. Fifth, we show that Major League Baseball rewards the least impact averse umpires with lucrative playoff assignments, implying that high levels of impact aversion contradict the league’s goals. Sixth, we show that decisions characterized by noisy signals induce even more impact aversion than comparable decisions characterized by non-noisy signals, which is consistent with second-order risk aversion. Seventh, we generalize impact aversion to other decision-makers.
a pivotal call and an non-pivotal one. Figure 2c shows the difference in the enforced strike zone between calls in full counts and calls in counts with fewer than three balls and fewer than two strikes. Full counts induce a more moderate contraction of the strike zone than with just two strikes. The fact that the enforced strike zone contracts in full counts relative to situations where neither choice is pivotal is consistent with our observation in Section 3.3 that third strikes tend to be more pivotal than fourth balls.

3.2 Semi-parametric estimates

The non-parametric estimates in Figure 2 assume that all calls in a given situation (e.g. counts with three balls) are independent draws from an identical distribution. However, the enforced strike zone varies across umpires and shifts left when a left-handed hitter is at bat. To account for these sources of variation, we estimate the semi-parametric model

\[y_i = p_i + \omega(p_i) \cdot S_i \beta + \epsilon_i, \tag{1} \]

where \(y_i \) is an indicator for a strike on call \(i \), \(p_i \) is the baseline probability of a strike call based on pitch location alone, \(S_i \beta \) is a linear term of situation-specific distortions, \(\omega(p_i) \) is a scalar weight that accounts for the shape of the bias, and \(\epsilon_i \) is a mean-zero error. We are interested in \(\beta \), the amount of distortion associated with situation \(S_i \) (e.g. three-ball count) being true.

The baseline probability \(p_i \) is a measure of the probability of a strike call in the absence of distortion. We measure the baseline probability \(p_i \) as \(\hat{m}_{u(i),h(i),\neg S}(X_i) \) using a kernel regression of \(y_i \) on pitch location. For call \(i \), we estimate \(\hat{m}_{u(i),h(i),\neg S} \) only on pitches called

\[\text{Umpires position themselves differently behind the catcher based on the handedness of the hitter, according to a former umpire. The empirical strike zone is horizontally symmetric about the midline of home plate for right-handed hitters, but for left-handed hitters, umpires call strikes on outside pitches more frequently than on inside pitches. This asymmetry accounts for the left-shift of the enforced strike zone relative to official strike zone in Figure 1a.} \]
by umpire $u^{(i)}$, pitched to batters of handedness $h^{(i)}$, and for which none of the states S_i are true—i.e. for counts with fewer than three balls and fewer than two strikes. If only three-ball and two-strike counts induce bias, then the baseline probability identifies the likelihood of a strike call based solely on the location of the pitch.

We weight the distortion term $S_i \beta$ by a function ω of the baseline probability. As Figure 2 shows, distortion is greatest when pitches are borderline, and distortion is nonexistent when pitches are obvious balls or obvious strikes. Accordingly, we define $\omega(p_i) \equiv 1 - 2|p_i - 0.5|$.18 We then estimate β by regressing $y_i - p_i$, the component of the observed call not explained by pitch location, on $\omega(p_i) \cdot S_i \beta$. We interpret β as the percentage point change in the probability of a strike from a baseline probability of 0.5—i.e. the bias on a borderline pitch.19

Table 1 reports $\hat{\beta}$, with standard errors clustered by (u, h) tuple. The semi-parametric estimates echo the effects depicted non-parametrically in Figure 2. In three-ball counts, borderline pitches are called strikes more than 58% of the time; in two-strike counts, borderline pitches are called strikes only 31% of the time. In full counts (Model 2), the probability of a strike decreases by about 12 percentage points ($0.09 - 0.19 - 0.02$): 50/50 calls become 38/62 calls. The strike zone expands in three-ball counts, contracts in two-strike counts, and contracts to a lesser extent in full counts.

These estimates show that umpires violate their directive to call balls and strikes based solely on pitch location. However, the claim that asymmetrically pivotal counts cause changes in the enforced strike zone rests on an assumption of exogeneity with respect to omitted situational variables. While the structural context of umpire decision-making is relatively simple, we address some potential confounds by including additional situational

18For certain balls or strikes ($p_i \in \{0, 1\}$), $\omega(p_i) = 0$. For borderline pitches, or locations in which balls and strikes are equally probable ($p_i = 0.5$), $\omega(p_i) = 1$. For $0 < |p_i - 0.5| < 0.5$, $0 < \omega(p_i) < 1$. Note that because the biases are greater at the top and bottom of the official strike zone than along the sides, $\hat{\beta}$ will overstate the bias on the sides and understate the bias along the top and bottom.

19More generally, one can interpret $\omega(p_i) \cdot \hat{\beta}$ as the distortion on a call for which S_i is true.
3-ball count & 0.082*** & 0.088*** & 0.075*** & 0.081*** \\[-2pt] & (17.21) & (15.67) & (12.25) & (17.01) \\[8pt] 2-strike count & -0.19*** & -0.19*** & -0.20*** & -0.18*** \\[-2pt] & (-37.20) & (-35.40) & (-35.97) & (-34.54) \\[8pt] Full count & -0.022 \\[-2pt] & (-2.07) \\[8pt] Pitching team losing * 3-ball count & 0.019 \\[-2pt] & (2.04) \\[8pt] Batting team losing * 2-strike count & 0.011 \\[-2pt] & (1.60) \\[8pt] Called strike on last pitch in at-bat * 2-strike count & -0.057*** \\[-2pt] & (-7.33) \\[8pt] Observations & 1036335 & 1036335 & 1036335 & 1036335 \\

\(t\) statistics in parentheses
* \(p < 0.01\), ** \(p < 0.001\), *** \(p < 0.0001\)

Table 1: Semi-parametric regression on strike call. Coefficients of weighted linear component reported. Coefficient is percentage point change on the probability of a called strike for a borderline pitch under the given situation. Standard errors clustered by umpire–batter handedness (75 * 2 = 150 clusters).

First, we address the alternative explanation that our estimates can be explained by favoritism of underdogs or a desire to keep the game close. Price et al. (2012) show that referees in the National Basketball Association disproportionately call discretionary fouls on the leading team. In three-ball counts, umpires may view the pitcher as the underdog and favor him by expanding the strike zone. In two-strike counts, umpires may view the batter as the underdog and favor him by contracting the strike zone. If so, we should observe a greater distortion when the underdog is trailing, which would also help keep the game close. Model 3 includes two indicator variables: one for three-ball counts in which the pitching

20 We cannot include these situational variables directly because the distortion term is assumed to be zero when there are fewer than three balls and fewer than two strikes.
team is trailing, and one for two-strike counts in which the batting team is trailing. The first interaction explains a small component of the three-ball effect with marginal significance ($p = 0.043$); the second interaction suggests that if anything, umpires contract the strike zone less when the batting team is trailing. Favoritism of underdogs or a desire to keep the game close are unlikely explanations for umpires’ aversion to pivotal calls.

Second, we address the possibility that negative autocorrelation, or the gambler’s fallacy (Tversky and Kahneman, 1974; Rabin, 2002), can explain our results. After calling a strike, umpires are less likely to call a strike on the subsequent pitch, controlling for the count and the location of the pitch (Green and Daniels, 2014). By contrast, ball calls are no less likely after a ball.\footnote{For both of these effects, the base case comprises the first pitch in the at-bat and calls that follow swings.} If negative autocorrelation does explain the contraction of the strike zone with two strikes, we should observe the contraction only in two-strike counts preceded by a called strike. Model 4 includes an indicator variable for two-strike counts preceded by a called strike, which explains a small component of the two-strike effect. When a two-strike count is preceded by a ball or a swing, borderline pitches become 32/68 calls; when a two-strike count is preceded by a called strike, borderline pitches become 26/74 calls. Negative autocorrelation cannot fully account for umpires’ aversion to calling third strikes.\footnote{Interestingly, the strike zone expands only in three-ball counts preceded by a ball, and not in three-ball counts preceded by a swing or a called strike. However, it is impossible to say whether this is due to negative autocorrelation, as a three-ball count preceded by a ball is also the first three-ball count faced by the batter in the at-bat. There is no autocorrelation (negative or positive) following balls when the count has fewer than three balls.}

Additional alternative explanations are addressed in the Appendix, which considers the possibility that impact aversion might be a response to the umpire’s rational expectations of the forthcoming pitch.
3.3 A continuous measure of call impact

By expanding the strike zone in three-ball counts and shrinking it in two-strike counts, umpires reveal an aversion to calls that end at-bats. But do they avoid these calls because they are pivotal to the outcome of the at-bat, or because they are pivotal to the outcome of the game? If umpires are averse to impacting the game, then the three-ball strike zone should expand more when the bases are loaded (and a walk would score a run), and the two-strike strike zone should contract more when there are two outs (and a strike-out would end the inning).

To determine whether umpires avoid calls that affect the outcomes of games over and above the outcomes of at-bats, we consider a continuous measure of how each call (ball or strike) impacts the outcome of the half-inning. A baseball game comprises a series of half-innings in which one team pitches and the other team bats. When three outs are recorded, the half-inning ends and the teams switch roles in the next half-inning. Before a pitch, the state of the half-inning can be summarized by the expected number of runs the batting team will score over the remainder of the half-inning. We define a half-inning state as the tuple of the count, outs, and runners on base, of which there are \((4 \times 3) \times 3 \times 2^3 = 288\) combinations.

We estimate \(\hat{E}[r_s]\), the expected number of runs to be scored over the remainder of each half-inning state \(s\), as \(\hat{R}_s = \frac{1}{||s||} \sum_{i \in s} r_i\), the empirical average in corresponding states using 26 years and 16 million pitches of data. Table 2 lists properties for select half-inning states. Generally, \(\hat{R}_s\) increases with the number of balls, decreases with the number of strikes, increases with men on base, and decreases with the number of outs.

23Research shows that the number of runs a team scores closely tracks its probability of winning (Goldstein, 2014). In addition, the effect of a call on the outcome of the game cannot be measured reliably because the state sparse is too sparse.

24These data comprise almost every pitch thrown during the 1988-2013 regular seasons. We observe the least common half-inning state 688 times.

25In some three-ball and zero-strike counts with a runner on third and fewer than two outs, calling a strike increases the expected number of runs to be scored. We suspect that this is because hitters are instructed not to swing with three balls and zero strikes, but are allowed to swing with three balls and one strike. Since pitches in both counts are likely to be in the strike zone, swings with runners on third are likely to be
Table 2: The expected run measure \(\hat{R}_s \), the call impact measures \(\delta_{\text{ball}} \) & \(\delta_{\text{strike}} \), and the differential impact measure \(\Delta \) for selected half-inning states.

<table>
<thead>
<tr>
<th>Half-inning state</th>
<th>Incidence (%)</th>
<th>(\hat{R}_s)</th>
<th>(\delta_{\text{ball}})</th>
<th>(\delta_{\text{strike}})</th>
<th>(\Delta = \delta_{\text{ball}} + \delta_{\text{strike}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 2-1, bases empty, 0 out</td>
<td>1.0</td>
<td>0.55</td>
<td>0.12</td>
<td>-0.07</td>
<td>0.047</td>
</tr>
<tr>
<td>b. 3-1, bases empty, 0 out</td>
<td>0.49</td>
<td>0.66</td>
<td>0.22</td>
<td>-0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>c. 2-2, bases empty, 0 out</td>
<td>1.2</td>
<td>0.48</td>
<td>0.10</td>
<td>-0.21</td>
<td>-0.11</td>
</tr>
<tr>
<td>d. 3-2, bases empty, 0 out</td>
<td>0.53</td>
<td>0.58</td>
<td>0.30</td>
<td>-0.31</td>
<td>-0.013</td>
</tr>
<tr>
<td>e. 2-1, bases loaded, 2 out</td>
<td>0.047</td>
<td>0.88</td>
<td>0.32</td>
<td>-0.21</td>
<td>0.11</td>
</tr>
<tr>
<td>f. 3-1, bases loaded, 2 out</td>
<td>0.027</td>
<td>1.2</td>
<td>0.53</td>
<td>-0.21</td>
<td>0.32</td>
</tr>
<tr>
<td>g. 2-2, bases loaded, 2 out</td>
<td>0.053</td>
<td>0.67</td>
<td>0.32</td>
<td>-0.67</td>
<td>-0.34</td>
</tr>
<tr>
<td>h. 3-2, bases loaded, 2 out</td>
<td>0.027</td>
<td>0.99</td>
<td>0.75</td>
<td>-0.99</td>
<td>-0.24</td>
</tr>
</tbody>
</table>

We measure the impact of calling a ball or a strike as the change in the expected number of runs to be scored over the remainder of the half-inning as a result of the call:

\[
\begin{align*}
\delta_{\text{ball}} &= \hat{R}_{s'}^{\text{ball}} - \hat{R}_s \\
\delta_{\text{strike}} &= \hat{R}_{s'}^{\text{strike}} - \hat{R}_s
\end{align*}
\]

where \(\delta_{\text{ball}} \) is the impact of calling a ball, \(\delta_{\text{strike}} \) is the impact of calling a strike, \(s \) is the current half-inning state, and \(s' \) is the half-inning state brought about by the call.\(^{26}\) In Table 2, \(\delta_{\text{ball}} \) is positive and large in three-ball counts and even more positive with runners on base. Similarly, \(\delta_{\text{strike}} \) is negative and large in two-strike counts with zero outs and the bases empty (c & d) and even more negative with two outs and the bases loaded (g & h). In high-stakes states—two outs, bases loaded—a second strike (e & f) decreases the expected number of runs nearly as much as a third strike with the bases empty and zero outs (c & d).

Figure 3a shows the distribution of \(\delta_{\text{ball}} \) and \(\delta_{\text{strike}} \) in our sample of over a million calls. The graph contains one circle for each half-inning state, sized according to the relative beneficial for the batting team.

\(^{26}\) \(\hat{R}_{s'}^{\text{strike}} \equiv 0 \) when a strike ends the half-inning.
Figure 3: Distribution of half-inning states by strike and ball impact, $\delta_{\text{strike}} \& \delta_{\text{ball}}$, for calls made by umpires in our sample. The impact of a ball or a strike is the difference in the expected number of runs to be scored over the remained of the half-inning from making that call. Sizes of circles (a) represent the relative incidence of states with associated impact. The differential impact of a call, Δ, is $\delta_{\text{ball}} + \delta_{\text{strike}}$. For most calls, a strike and a ball are equally non-pivotal, creating a peak in the distribution of Δ at zero (b). But for some states, ball and strike impacts are asymmetric: one call is more pivotal than the other.

(a) Joint distribution of $\delta_{\text{ball}} \& \delta_{\text{strike}}$
(b) Distribution of $\delta_{\text{ball}} + \delta_{\text{strike}}$

incidence of that state. Most decisions are relatively non-pivotal regardless of whether a ball or a strike is called; these calls have strike and ball impacts near zero. However, a number of states are more pivotal for strike calls than for ball calls, or more pivotal for ball calls than for strike calls. Moreover, states which portend high-stakes decisions, in which at least one option has high impact, tend to have asymmetric impacts, or lie off of the diagonal.

The impact averse umpire avoids the asymmetrically pivotal option when the correct call is not obvious. We measure how asymmetrically pivotal a call is according to its differential impact, the sum of its ball and strike impacts: $\Delta = \delta_{\text{ball}} + \delta_{\text{strike}}$. For states that lie on the diagonal in Figure 3a (for which $\delta_{\text{ball}} = -\delta_{\text{strike}}$), $\Delta = 0$. For asymmetrically ball-pivotal calls, $\Delta > 0$; for asymmetrically strike-pivotal calls, $\Delta < 0$. Figure 3b shows the distribution of differential impact in our sample. The distribution peaks at zero: many calls are non-pivotal. There is more mass in the negative domain than the positive domain: strikes tend
to be more pivotal than balls (every state with a full count is asymmetrically strike-pivotal).
The distribution has long tails: some calls are asymmetrically strike-pivotal by more than half a run ($\Delta < -0.5$), and some calls are asymmetrically pivotal as strikes by more than half a run ($\Delta > 0.5$).

3.4 Umpires are averse to making the more pivotal call

We investigate whether umpires are impact averse by observing how the probability of a called strike changes with our differential impact measure Δ. If umpires are averse to making the more pivotal call, we should observe that conditional on the location of the pitch, the probability of a called strike increases monotonically with Δ. When $\Delta < 0$, a strike call is asymmetrically pivotal, and the probability of a strike call should decline; when $\Delta > 0$, a ball call is asymmetrically pivotal, and the probability of a strike call should increase. We estimate a variation of the semi-parametric model in Equation 1, in which the distortion is a non-linear function of Δ:

$$y_i = p_i + g(\omega(p_i) \cdot \Delta_i) + \epsilon_i$$ (2)

We are interested in the shape of g, which we estimate from a kernel regression of $y_i - p_i$ on $\omega(p_i) \cdot \Delta_i$.

27Unlike the baseline probability in Equation 1, which is calculated on the subset of calls with fewer than three balls and fewer than two strikes in the count, p_i here is calculated when the umpire’s calls are symmetrically pivotal, or when $\Delta = 0$. This construction ensures that $\hat{g} = 0$ when $\Delta = 0$, or that the baseline probability alone explains the call when the impacts of the umpire’s options are symmetric. Specifically, we measure this baseline probability p_i as $\hat{m}_{u(i),h(i)}(X_i, \Delta = 0)$, the prediction from a three-dimensional kernel regression of y_i for calls made by umpire $u(i)$ on batters of handedness $h(i)$. p_i is the two-dimensional slice of \hat{m} where $\Delta = 0$—the strike zone that the umpire would enforce if the impacts of calling a ball and a strike were symmetric. Since the distribution of Δ is concentrated at zero, our estimates are not meaningfully distorted by the curse of dimensionality. The correlation between the baseline probabilities as calculated in Equation 1 and here is 0.98.

28Since the distribution of Δ is highly uneven (see Figure 3b), we use an adaptive bandwidth with a local bandwidth factor of the form $\left(f(x) / \exp \left(\frac{1}{N} \sum_{i=1}^{N} \log \hat{f}(X_i) \right) \right)^{-\alpha}$, where $f(x)$ is a density estimate using Silverman’s rule of thumb bandwidth. We use $\alpha = 0.5$ to balance smoothness and detail in the visual
baseline probability of 0.5 when \(z = \Delta \)—i.e. the bias on a borderline pitch with differential impact \(\Delta \). If umpires avoid making the more pivotal call, we will observe \(\hat{g} > 0 \) when \(\Delta > 0 \) and \(\hat{g} < 0 \) when \(\Delta < 0 \).

Figure 4: \(\hat{g} \): the change in the probability of a called strike from the baseline probability. States with slightly asymmetric call impacts produce sizable distortions, beyond which the effect of differential impact (\(\Delta \)) is largely stable. Annotations refer to the states described in Table 2. Dotted lines denote 95\% confidence intervals.

Figure 4 shows \(\hat{g} \), the distortion on a borderline pitch. The distortion is consistent with impact aversion: negative for asymmetrically strike-pivotal calls (\(\Delta < 0 \)) and positive for asymmetrically ball-pivotal calls (\(\Delta > 0 \)). \(\hat{g} \) is generally increasing in \(\Delta \), but the steepest increases occur in a narrow band around zero. For highly asymmetric calls, \(\hat{g} \) is flat. When balls are asymmetrically pivotal, \(\hat{g} \) peaks at just \(\Delta = 0.05 \). This corresponds to half-inning state \(a \) in Table 2, in which the bases are empty, there are zero outs, and the count has two balls and one strike. Here, a ball is pivotal because it creates a count favorable to the hitter, not because it walks the batter. Hence, large distortions may occur when the count

29 More generally, one can interpret \(\hat{g}(z) \) as the bias on call with \(\omega(p_i) \cdot \Delta_i = z \).

30 When \(\Delta = 0 \), \(g = 0 \) by assumption: when the impacts of the umpire’s options are symmetric, the probability of a strike call depends on pitch location alone.
has fewer than three balls and fewer than two strikes. When $\Delta = 0.05$, borderline pitches are called strikes about 55% of the time. More positive asymmetries induce similar amounts of distortion.

When strikes are asymmetrically pivotal, \hat{g} falls quickly from $\Delta = 0$ until $\Delta = -0.1$. A differential impact of -0.1 corresponds to state c in Table 2, in which the bases are empty, there are zero outs, and the count has two balls and two strikes. Here, a strike is pivotal because it ends the at-bat, even though it decreases the expected runs measure by just a fifth of a run. When $\Delta = -0.1$, borderline pitches are called strikes only 35% of the time. Further decreases in Δ induce similar amounts of distortion.

These patterns confirm that umpires are impact averse, and they show that even a small asymmetry in the impacts of the umpire’s options strongly distorts his decisions. This implies that impact aversion distorts many decisions, not just the most asymmetrically pivotal ones.

3.5 Narrow framing

The relative steepness of \hat{g} around zero suggests that umpires are as sensitive to moderate asymmetries as they are to large asymmetries. But this pattern may also arise if umpires greatly avoid making an impact on the at-bat but are less concerned about making an impact on the game. Research on “narrow framing” discusses the economic importance of the psychologically relevant time horizon (Kahneman, 2003; Barberis, Huang and Thaler, 2006).

To determine whether impact aversion is restricted to at-bats, we estimate \hat{g} separately each of the twelve possible counts. As Table 2 shows, the same count can have varying differential impacts depending on the number of outs and whether there are runners on base. If umpires define impact wholly by the count, then \hat{g} will be independent of Δ in each count. By contrast, if umpires are averse to making an impact on the half-inning over and above their impact on the at-bat, then \hat{g} will increase with Δ in every count. If umpires are
averse to making an impact on the at-bat only by virtue of its impact on the half-inning, then \(\hat{g} \) will resemble Figure 4 for all counts.

Figure 5 shows that umpires reveal an aversion to making the call that more greatly changes the outcome of the half-inning, rather than the call that more greatly changes the outcome of the at-bat. In eleven of twelve counts, \(\hat{g} \) sharply increases with \(\Delta \) around \(\Delta = 0 \) for borderline pitches. Moreover, the amount of distortion is similar across counts for moderate asymmetries; when \(\Delta = -0.1 \), for instance, the distortion is between \(-10\) and \(-20\) percentage points for six of the seven counts in which \(\Delta \leq -0.1 \) is observed.\(^{31}\)

3.6 Variation in external motivation

Impact aversion results from a tradeoff between two motivations: to make the correct choice, and to not make a mistake that proves consequential. For umpires, this latter motivation may come from fans and the media, who often criticize umpires for wrong calls that greatly influence the outcomes of games. If so, impact aversion should be greater when the audience is larger—and the scrutiny is more intense. We document covariation between impact aversion and two measures of audience size: the size of the crowd in the stadium and whether the game is being broadcast nationally during an exclusive time slot.\(^ {32}\)

\(^{31}\)These figures reveal other interesting patterns. As in Figure 4, umpires appear not to differentiate between calls that are moderately asymmetric in their impacts and those that are extremely asymmetric. In full counts (Figure 5i), \(\Delta = -0.1 \) and \(\Delta = -0.5 \) both imply about a 15 percentage point decrease in the probability of a strike call on a borderline pitch, even though these states portend considerably different outcomes for the half-inning. With three balls, the strike zone only expands when the count has zero strikes (Figure 5l), and then only at moderate levels of differential impact. When the count has three balls and one strike (Figure 5j), we estimate the distortions as a precise zero across the observed range of \(\Delta \). In addition, the most asymmetrically strike-pivotal calls, which occur in two-strike counts, induce dramatically different distortions depending on the number of balls. With zero balls (Figure 5e), the strike zone contracts by as much as 25 percentage points—50/50 calls become 25/75 calls. But with just one ball (Figure 5f), the bias is not statistically different from zero for the most asymmetrically strike-pivotal calls. For moderately strike asymmetric states in two-strike counts, the strike zone contracts by 10 to 20 percentage points regardless of the number of balls.

\(^ {32}\)Playoff games pose as another high scrutiny setting, but the effect of scrutiny on impact aversion is confounded by the selection process for playoff officiating which, as we show in Section 4.3, rewards the least impact averse umpires. By contrast, regular season assignments are based only on considerations of logistics and fairness: minimizing travel and ensuring that umpires officiate each team a similar number of times...
Figure 5: \hat{g} by count.

(a) 0 balls & 0 strikes

(b) 1 ball & 0 strikes

(c) 0 balls & 1 strike

(d) 1 ball & 1 strike

(e) 0 balls & 2 strikes

(f) 1 ball & 2 strikes
impact aversion is greater when the audience is larger. This suggests that pressure from fans and the media motivates umpires’ shared aversion to the more pivotal call.

3.6.1 Crowd size

We create a measure of crowd size that takes two values: games in which attendance is greater than 90% of capacity, and games in which attendance is less than 50% of capacity. Figure 6 shows \hat{g} for each of these values (6a) as well as the difference $\hat{g}_{>90%} - \hat{g}_{<50%}$ (6b). Impact aversion generally increases in the size of the crowd: for asymmetrically strike-pivotal calls, the distortion is more negative for larger crowds ($-\hat{g}_{>90%} > -\hat{g}_{<50%}$ when $\Delta < 0$); for asymmetrically ball-pivotal calls, the distortion is more positive for larger crowds ($\hat{g}_{>90%} > \hat{g}_{<50%}$ when $\Delta > 0$).

3.6.2 Sunday Night Baseball

The vast majority of regular season games are broadcast locally and share time slots with other games. A notable exception is Sunday Night Baseball, which ESPN broadcasts live every Sunday at 8pm Eastern time. The game is televised nationwide, and MLB schedules other games on Sunday to finish before the night game begins. As part of its $300M per year contract, ESPN can choose among the 15 scheduled matchups each Sunday to broadcast during Sunday Night Baseball (Newman, 2012). On average, games broadcast on Sunday Night Baseball attract larger television audiences, offer more compelling matchups, and have greater postseason implications than other regular season games. Presumably, umpires face greater scrutiny on Sunday night.

Figure 7 shows \hat{g} separately for games played on Sunday night and at other times (7a) as

(Trick, Yildiz and Yunes, 2012).

33 The variance of the difference between two random variables is the sum of the variances of each random variable minus twice the covariance. Rather than compute the covariance between two nonparametric estimates, we assume that the covariance is zero. Since the estimates follow each other closely, the true covariance is almost certainly positive. Assuming it to be zero means that the confidence interval shown is
Figure 6: \(\hat{g} \) by crowd size (a), and their difference (b). Distortions induced by impact aversion are generally greater (i.e. farther from zero) for larger crowds.

(a) Distortion for > 90% full stadiums and for < 50% full stadiums

(b) Difference in distortion between > 90% full and < 50% full stadiums

well as the difference \(\hat{g}_{\text{Sunday night}} - \hat{g}_{\text{Other times}} \) (7b). Impact aversion greatly increases during Sunday Night Baseball. For the most asymmetrically strike-pivotal calls, the distortion is as much as 10 percentage points greater on Sunday night. For the most asymmetrically ball-pivotal calls, the distortion is as much as 20 percentage points greater on Sunday night; these borderline pitches are 75/25 calls on Sunday night and just 55/45 calls the rest of the week.

4 A Model of Impact Aversion

We propose and estimate a single parameter, state-based utility model of umpire decision making. We use this model to characterize the heterogeneity in impact aversion among umpires. In our model, umpires derive utility from making calls that are consistent with wider than the true confidence interval.

\(^{34}\)ESPN can swap games during the season so long as the network does not air a single team more than five times in a season.
Figure 7: \hat{g} for Sunday Night Baseball and for games at other times (a), and their difference (b). Distortions induced by impact aversion are generally greater (i.e. farther from zero) for games played on Sunday night.

(a) Distortion for Sunday Night Baseball and for games played at other times

(b) Difference in distortion between games played on Sunday night and other times

Their interpretations of the strike zone. Umpires gain utility when they make self-consistent calls, and they lose utility when they make self-inconsistent calls.

Our model presumes that umpires prefer to make the self-consistent call. But it also allows for umpires to have preferences about making the more pivotal call in error. If an umpire calls a self-consistent ball or strike, he receives a fixed amount of utility regardless of the impact of that call. But if he calls a self-inconsistent ball or strike, the amount of disutility he receives depends on how pivotal that call is. Consider the hypothetical utilities in Figure 8. If the umpire’s call is correct according to his idiosyncratic strike zone, he receives a utility of 1. The impact of his call does not affect the utility he gains from making the self-consistent call. If he calls a self-inconsistent ball or strike, his disutility rises in proportion to the impact he makes. Our model measures the slope of this disutility, which can be interpreted as the disappointment the umpire anticipates when he makes a self-inconsistent call that changes the expected outcome of the game. If an umpire is impact
Figure 8: Hypothetical utilities. Calling a self-consistent ball or strike generates a fixed amount of utility regardless of the impact of that call. However, the disutility generated by calling a self-inconsistent ball or strike depends on how pivotal that call is. In this example, a self-inconsistent ball or strike generates more disutility when the impact of that call is high. We estimate the slope of $U_{\text{self-inconsistent}}$ for each umpire.

neutral, this slope will be zero. But if he is impact averse, this slope will be negative. (If he is impact seeking, the slope will be positive.)

Prior to each pitch, the umpire forms beliefs about the impact of calling a ball and impact of calling a strike on the expected outcome of the game, which we measure as δ_{ball} and δ_{strike}. The umpire then observes the location of the pitch, which signals the probability that the pitch is a strike according to his enforced strike zone.

We model umpires as maximizing the signal-weighted utilities of making the self-consistent and self-inconsistent calls. With probability p, a strike call is self-consistent; with probability $1 - p$, a strike call is self-inconsistent:

$$U_{\text{strike}} = p \cdot U_{\text{self-consistent}} + (1 - p) \cdot U_{\text{self-inconsistent}}$$
The reverse is true for calling a ball:

\[U_{\text{ball}} = (1 - p) \cdot U_{\text{self-consistent}} + p \cdot U_{\text{self-inconsistent}} \]

Given these utilities, the umpire calls a strike if \(U_{\text{strike}} > U_{\text{ball}} \), and he calls a ball if \(U_{\text{strike}} < U_{\text{ball}} \).

We normalize \(U_{\text{self-consistent}} = 1 \). Symmetrically, we fix \(U_{\text{self-inconsistent}} = -1 \) when the impact of the associated call is zero. When a call is pivotal, we allow \(U_{\text{self-inconsistent}} \) to vary linearly with its impact. We also allow the slope of this relationship to vary by umpire.

\[U_{\text{strike}}(p) = p - (1 - p)(1 - \lambda_u \delta_{\text{strike}}) \quad (3) \]
\[U_{\text{ball}}(p) = (1 - p) - p(1 + \lambda_u \delta_{\text{ball}}) \quad (4) \]

If the umpire observes an obvious ball or strike \((p \in \{0, 1\})\), he receives a utility of 1 for making the obviously self-consistent call and a utility of 0 for making the obviously self-inconsistent call. He makes the self-consistent call. But if the signal is indeterminate \((p \in (0, 1))\), his call depends on the amount of disappointment he expects to feel when making the self-inconsistent call. If \(\lambda_u = 0 \), the umpire is not influenced by the impact of the call, and he receives a utility of \(2p - 1 \) for calling a strike and \(1 - 2p \) for calling a ball. Again, he makes the self-consistent call. But if \(\lambda_u > 0 \), he may choose the self-inconsistent call if it is the less pivotal choice. Consider a call for which \(p = 0.6 \), \(\delta_{\text{strike}} = -0.1 \) and \(\delta_{\text{ball}} = 0 \). Here, a strike is the self-consistent call, but the umpire calls a ball if \(\lambda_u > 10 \).
4.1 Structural estimates

We measure the signal p as the baseline probability of a strike call, or the probability of a strike based solely on the location of the pitch.\(^\text{35}\) Next, we estimate λ_u separately for each umpire: first adding an IID type I extreme value error term to each of the utilities, and then finding the $\hat{\lambda}_u$ that maximizes the resulting logistic likelihood function. Calls with asymmetric impact identify $\hat{\lambda}_u$.

Figure 9: Distribution of $\hat{\lambda}_u$ for the 75 umpires in our sample (a), and the relationship between these estimates and MLB umpiring experience (b). For an unbiased umpire, $\lambda_u = 0$. The smallest λ_u is 10. Impact aversion does not appear to be correlated with experience.

![Distribution of $\hat{\lambda}_u$ across umpires](image)

Figure 9a shows the distribution of $\hat{\lambda}_u$ across the 75 umpires in our sample. Each $\hat{\lambda}_u$ is considerably greater than zero, both statistically and economically. The least biased umpire has a $\hat{\lambda}_u = 10$ with a standard error of 0.55, and the largest standard error for any umpire’s

\(^{35}\)Unlike the baseline probability in Equation 2, which is calculated when the umpire’s calls are symmetrically pivotal, here the baseline probability is calculated when the impacts are not only symmetric but also both equal to zero, or when $\delta_{\text{ball}} = \delta_{\text{strike}} = 0$. Specifically, we measure p_i as $\hat{m}_{u(i)}(h^{(i)})(X_i, \delta_{\text{ball}} = 0, \delta_{\text{strike}} = 0)$: the probability that umpire $u^{(i)}$ calls a strike on a batter with handedness $h^{(i)}$ when both options are non-pivotal. \hat{m} is a kernel regression in four dimensions: two for the location of the pitch, one for δ_{ball}, and one for δ_{strike}. p_i is the likelihood that the umpire would call a strike were he not influenced by the impact of either call. The correlation between the baseline probabilities as calculated in Equation 2 and here is 0.95.
\(\hat{\lambda} \) is 1.1. Every umpire in our sample shades away from the more pivotal call when the self-consistent call is not obvious.

Heterogeneity in impact aversion among umpires can be explained by persistent, individual-level characteristics. We estimate \(\lambda_{u,t} \), a coefficient of impact aversion for each umpire \(u \) in each season \(t \) from 2009-11, and we regress \(\hat{\lambda}_{u,t} \) on \(\alpha_u \), a set of umpire fixed effects.\(^{36}\) This regression has an \(R^2 \) of 0.63 (adjusted-\(R^2 = 0.44 \)); stable differences among umpires account for much of the year-to-year variation in impact aversion. We also rank order \(\hat{\lambda}_{u,t} \) by season and observe a correlation of 0.56 between the orderings in 2009 and 2011; relative levels of impact aversion are persistent across the observation window. Impact aversion appears persistent over longer time horizons, as well. Figure 9b shows the relationship between \(\hat{\lambda}_u \) and tenure, which we define as the year in which the umpire first officiates a Major League game. Though the causal relationship is likely confounded by unobserved selection, there does not appear to be a relationship between tenure and impact aversion.

4.2 Strike thresholds

To see the distortion of the strike zone implied by a particular \(\hat{\lambda}_u \), consider a counterfactual prediction: the signal an umpire would need to receive in order to be indifferent between calling a ball and a strike. An unbiased umpire is indifferent when he receives a signal of \(p = 0.5 \), but a biased umpire (\(\lambda_u > 0 \)) may require a different signal when choosing between calls with asymmetric impact. Let \(\tilde{p}_u \) be a strike threshold: the signal \(p \) at which umpire \(u \) with parameter \(\lambda_u \) is indifferent between calling a ball and calling a strike:

\[
\tilde{p}_u = \{ p : U_{\text{strike}} = U_{\text{ball}}; \lambda_u \}
\]

\(^{36}\)We weight each observation of \(\hat{\lambda}_u \) by the inverse of its variance.
Substituting from Equations 3 & 4 and solving for \(\tilde{p}_u \):

\[
\tilde{p}_u = \frac{2 - \lambda_u \delta_{\text{strike}}}{4 + \lambda_u (\delta_{\text{ball}} - \delta_{\text{strike}})}
\]

(5)

For an umpire averse to making pivotal calls (\(\hat{\lambda}_u > 0 \)), \(\tilde{p}_u > 0.5 \) when \(\delta_{\text{ball}} < -\delta_{\text{strike}} \), and \(\tilde{p}_u < 0.5 \) when \(\delta_{\text{ball}} > -\delta_{\text{strike}} \). When a strike is more pivotal than a ball, the biased umpire needs a signal greater than 50% in order to call a strike; he is ball-biased. But when a ball is more pivotal than a strike, the biased umpire calls strikes when he is less than 50% sure that the pitch is actually a strike; he is strike-biased. By construction, \(\tilde{p}_u = 0.5 \) when \(\delta_{\text{ball}} = -\delta_{\text{strike}} \): the umpire is unbiased when the impacts of his options are symmetric.

Figure 10: Strike thresholds \(\tilde{p}_u \) for the minimum (a) and maximum (b) \(\lambda_u \) as computed using Equation 5. By construction the \(\tilde{p} = 0.5 \) for calls with symmetric impact. When a strike is asymmetrically pivotal, \(\tilde{p} > 0.5 \): both the least biased and the most biased umpires need a signal of greater than 50% to call a strike 50% of the time. Annotated letters correspond to half-inning states from Table 2.

(a) \(\tilde{p}(\delta_{\text{ball}}, \delta_{\text{strike}}; \hat{\lambda}_{\text{min}} = 10.4) \)

(b) \(\tilde{p}(\delta_{\text{ball}}, \delta_{\text{strike}}; \hat{\lambda}_{\text{max}} = 20.9) \)

Figure 10 shows strike thresholds for the lowest observed \(\hat{\lambda}_u \) (10a) and the highest ob-
served $\hat{\lambda}_u$ (10b). For both the least and most impact averse umpires, the strike threshold deviates greatly from 0.5 with moderate amounts of asymmetry. Half-inning state a has nearly symmetric call impacts with $\Delta < 0.05$ (see Table 2). Even so, the strike threshold ranges from 37% to 42% in the population—no umpire needs to be more than 42% confident that a pitch is a strike in order to call a strike 50% of the time. Heterogeneity in impact aversion is small relative to the magnitude of impact aversion for the least biased umpire. For each of the five half-inning states plotted on the figures, the difference in the strike thresholds between the most and least biased umpires is smaller than the difference between the strike threshold of the least biased umpire and the unbiased threshold of 0.5.

4.3 Playoff officiating

More impact averse umpires are less likely to receive lucrative postseason assignments. The regression results reported in Table 3 predict an umpire’s chances of officiating at least one series during the 2011-13 postseasons, beginning just after the period over which $\hat{\lambda}_u$ are estimated. Model 1 shows that 73% of umpires in our sample officiate at least one postseason series during this interval. An umpire whose $\hat{\lambda}_u$ is one standard deviation below the mean—i.e. less impact averse than average—receives a postseason assignment with 88% probability. But an umpire who is one standard deviation more impact averse than average receives a postseason assignment with only 58% probability.38

Major League Baseball may penalize more impact averse umpires because they are inaccurate in making their calls. We predict playoff assignment using two measures of accuracy. The first, consistency, measures the percent of an umpire’s calls that are correct according to his own strike zone.39 The second, correctness, is the share of a umpire’s calls that are

37 A crew of six umpires is assigned to each postseason series. The umpires rotate positions (home plate; first, second, and third base; right and left field) each game.
38 A kernel regression (not reported) shows this relationship to be approximately linear.
39 To calculate consistency, we identify 50% contour lines for each umpire–batter handedness tuple. For reference, Figure 1a shows the 50% contour line for all calls in the data. Strike calls inside the 50% contour line
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda) (standardized)</td>
<td>-0.15***</td>
<td>-0.20***</td>
<td>-0.15***</td>
</tr>
<tr>
<td></td>
<td>(-3.43)</td>
<td>(-3.86)</td>
<td>(-3.00)</td>
</tr>
<tr>
<td>Consistency (standardized)</td>
<td>0.12*</td>
<td>0.085</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.87)</td>
<td>(1.65)</td>
<td></td>
</tr>
<tr>
<td>Correctness (standardized)</td>
<td>-0.019</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.37)</td>
<td>(0.22)</td>
<td></td>
</tr>
<tr>
<td>Hired in 1999</td>
<td></td>
<td></td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.46)</td>
</tr>
<tr>
<td>Hired after 1999</td>
<td></td>
<td>-0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-1.57)</td>
<td></td>
</tr>
<tr>
<td>Home-plate umpire for > 88 games, 2009-11</td>
<td></td>
<td>0.43***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.49)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.73***</td>
<td>0.73***</td>
<td>0.43***</td>
</tr>
<tr>
<td></td>
<td>(15.05)</td>
<td>(15.24)</td>
<td>(3.57)</td>
</tr>
<tr>
<td>Observations</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.113</td>
<td>0.159</td>
<td>0.375</td>
</tr>
</tbody>
</table>

* \(t \) statistics in parentheses
* \(p < 0.1 \), ** \(p < 0.05 \), *** \(p < 0.01 \)

Table 3: Linear probability model of officiating at least one playoff series between 2011 and 2013, with Huber-White standard errors.

correct according to the official strike zone. Model 2 shows that more consistent umpires are more likely to receive at least one playoff assignment, but more correct umpires are not more likely. This finding is consistent with anecdotal evidence that the league tolerates deviations from the official strike zone as long as umpires enforce those deviations consistently. Moreover, neither measure of accuracy can explain the negative relationship between impact aversion and playoff assignment. Punishment for impact aversion cannot be explained as punishment for inaccuracy.

and ball calls outside the 50% contour line are considered consistent; other calls are considered inconsistent.

Consistency and correctness are positively correlated (\(\sigma = 0.54 \)), and umpires are more consistent than correct: the average umpire is consistent on 89.8% of calls (s.d. 0.5%) and correct on 84.6% of calls (s.d. 0.9%).
Model 3 shows that the effects of impact aversion on playoff assignment persists when we control for the period in which the umpire was hired and his experience during the observation window, which shows that Major League Baseball also favors umpires with longer tenures and more experience.41 The league appears to punish more impact averse umpires because they are more impact averse.

5 Noisy Signals

We extend the model from Section 4 to address situations in which umpires observe a noisy signal rather than a point probability. In doing so, we assume that umpires are second-order risk averse (e.g. Nau, 2006; Abdellaoui, Klibanoff and Placido, Forthcoming), or \textit{ceteris paribus} prefer the option with the less noisy signal.42 Section 5.1 shows that under second-order risk aversion, impact aversion increases with signal noise. Section 5.2 examines three empirical situations characterized by noisy signals. In all three cases, consistent with the extended model’s predictions, impact aversion is greater for decisions with noisy signals than for comparable decisions with non-noisy signals.

5.1 Extended model with second-order risk aversion

A non-noisy signal p is the point probability that a strike is consistent with the umpire’s idiosyncratic strike zone. Let a noisy signal F_p be a symmetric distribution around p—i.e. a mean-preserving probability spread. In the model from Section 4, a noisy signal F_p and a non-noisy signal p produce the same behavior. Because the utilities in Equations 3 and 4 are linear in p, $\int_{p-\epsilon}^{p+\epsilon} U(q) dF(q) = U(p)$ for both U_{strike} and U_{ball}.

41Conditional on receiving at least one postseason assignment during 2011-13, the number of assignments and their prestige (i.e. whether the umpire officiates a World Series) depends (positively) on the umpire’s tenure, but not his level of impact aversion, consistency, or correctness.

42Abdellaoui, Klibanoff and Placido (Forthcoming) provides experimental evidence that individuals are second-order risk averse. Nau (2006) presents a theoretical analysis of second-order risk aversion.
This is no longer the case when the umpire is second-order risk averse. We incorporate second-order risk aversion by introducing the concave and strictly increasing function $v(\cdot)$:

\[
U_{\text{strike}}(p) = v\left(p - (1 - p) \cdot \gamma_{\text{strike}}\right) \quad (6)
\]
\[
U_{\text{ball}}(p) = v\left((1 - p) - p \cdot \gamma_{\text{ball}}\right) \quad (7)
\]

where γ_{strike} and γ_{ball} are the choice specific coefficients of impact aversion $1 - \lambda \delta_{\text{strike}}$ and $1 + \lambda \delta_{\text{ball}}$, respectively.

The concavity of the utilities affects choice when the signal becomes noisy. Consider a simple noisy signal F_p that realizes $p - \epsilon$ with probability $\frac{1}{2}$ and realizes $p + \epsilon$ with probability $\frac{1}{2}$, for $\epsilon > 0$. Under this Bernoulli noisy signal,

\[
\int_{p - \epsilon}^{p + \epsilon} U(q)dF(q) = \frac{1}{2} U(p - \epsilon) + \frac{1}{2} U(p + \epsilon)
\]
\[
= \frac{1}{2} v(a - b\epsilon) + \frac{1}{2} v(a + b\epsilon)
\]
\[
< v(a) = E[U(p)],
\]

where a is an option-specific function of p and γ, and $b = 1 + \gamma$. Because v is concave, the utility of a choice decreases as signal noise ϵ increases. Moreover, this decrease is sharper for more pivotal choices, or those with higher γ (since $b = 1 + \gamma$). A noisy signal introduces the symmetric second-order risks that a pivotal choice is more likely to be right and that it is more likely to be wrong. With concave second-order utility, an impact averse umpire will overweight the second-order risk that a pivotal choice is more likely to be wrong relative to the second-order risk that it is more likely to be right—and he will overweight the downside risk more for more pivotal choices. Hence, second-order risk aversion makes an impact averse umpire err even more towards the less pivotal choice when the signal is noisy than when the signal is not noisy.
5.2 Impact aversion is increasing in the noisiness of the signal

We assume that the signal is more noisy when the location of the pitch with respect to the official strike zone is more difficult to observe. We examine three situations in the data characterized by noisy signals: pitches near the top and bottom borders of the official strike zone, which move up and down based on the hitter’s height and stance; off-speed pitches, which follow a curved trajectory rather than a straight line; and pitches in which the umpire must make his call instantaneously, rather than be allowed to take his time. In all three cases, impact aversion is greater under noisy signals than under comparable non-noisy signals. These findings are consistent with the predictions of the extended model in Section 5.1.

5.2.1 The top and bottom of the official strike zone

The location of the pitch with respect to the official strike zone is more uncertain at the top and bottom of the official strike than along its sides for two reasons. First, the width of the official strike zone is fixed, but the height varies both with the height of the batter and with the stance he takes for each pitch. Second, the vertical location of the pitch is more difficult to observe than its horizontal location. Standing behind home plate, the umpire can more easily tell whether a pitch passes over the white of the plate than whether it crosses between the bottom of the batter’s knees and the midline of his chest.

Difficulty in determining the location of the pitch with respect to the top and bottom of the official strike zone creates uncertainty about the probability that the pitch is a strike. If a pitch passes over the edge of home plate at the hitter’s belt, it is likely a borderline pitch, or a strike 50% of the time. But if it passes over the center of home plate at the level of the batter’s knees, it might be a borderline pitch, but depending on the batter’s stance and the umpire’s perception, it might be a certain strike or a certain ball instead. Pitches near the top and bottom of the official strike zone carry noisier signals than pitches along the sides.
If umpires become more impact averse as the signal becomes noisier, then we should observe greater bias at the top and bottom of the official strike zone than along the sides. This is what we see in Figures 2a and 2b: the expansion of the strike zone in three-ball counts and the contraction of the strike zone in two-strike counts are both greater at the top and bottom of the official strike zone than along its sides. In both figures, the distortions along the top and bottom are twice as large as along the sides. Where the location of the pitch is more uncertain, umpires display greater impact aversion.

5.2.2 Off-speed pitches

The ease of identifying the location of the pitch also varies by the type of pitch. The locations of off-speed pitches, which tend to move vertically or laterally from the umpire’s perspective, are more difficult to observe than the locations of fastballs, which trace a more linear path from the pitcher’s hand to the catcher’s mitt. Using the PITCH F/X data, MLB classifies each pitch into one of more than a dozen types. We reduce this taxonomy to two types: fastballs, which comprise 64% of calls, and off-speed pitches, which comprise the remaining 36%. About two-thirds of off-speed pitches are either curveballs or sliders, two pitch types that pitchers spin upon release in order to induce vertical or lateral movement. On average, fastballs drop 5.0 vertical inches from release until crossing home plate, while off-speed pitches fall 9.5 inches.\footnote{43The t-statistic for this difference is of the order 10^3.}

Figure 11 shows $\hat{g}_{\text{Offspeed}}$ and $\hat{g}_{\text{Fastball}}$ separately (11a) as well as the difference $\hat{g}_{\text{Offspeed}} - \hat{g}_{\text{Fastball}}$ (11b). Impact aversion is stronger for off-speed pitches than for fastballs: the bias is more negative when the call is asymmetrically strike-pivotal and generally more positive when the call is asymmetrically ball-pivotal. Noisier signals induce greater impact aversion.
Figure 11: \hat{g} for off-speed pitches and fastballs (a), and their difference (b). Distortions induced by impact aversion are generally greater (i.e. farther from zero) for off-speed pitches.

(a) Distortion for fastballs and off-speed pitches

(b) Difference in distortion between off-speed pitches and fastballs

5.2.3 Time pressure

For most calls, play stops, and the umpire renders his verdict about a second after the catcher catches the pitch. But for 1.5% of calls, the umpire must announce his choice immediately, because the call tells the catcher whether to make a play on a potential baserunner. These calls occur in three-ball counts with a runner on first, except for calls with two strikes and two outs.\footnote{When the count has three balls and a walk would advance the runner(s) but a called strike would not end the inning, the call tells the catcher how he should address a potential steal. If the call is a strike, the catcher should make a play on the runner. But if the call is a ball, the runner advances and the catcher can only err by trying to make a play. Since the home plate umpire’s focus is on the pitch rather than the runners, he must make his call immediately in case a play needs to be made, even if no runners are trying to advance.} Time pressure increases uncertainty about the location of the pitch. If noisy signals induce greater impact aversion, we should observe more bias for calls with time pressure than for calls in three-ball counts without time pressure.\footnote{We compare calls under time pressure to calls in three-ball counts without time pressure because time pressure implies three balls.}

Figure 12 shows \hat{g}_{TP} and $\hat{g}_{¬TP}$ (3 balls) separately (12a) as well as the difference $\hat{g}_{TP} - \hat{g}_{¬TP}$.
Figure 12: \(\hat{g} \) for calls with time pressure and in three-ball counts without time pressure (a), and their difference (b). Distortions induced by impact aversion are generally greater (i.e. farther from zero) under time pressure.

(a) Distortion with time pressure and in 3-ball counts without time pressure

(b) Difference in distortions between time pressure conditions

\[\hat{g}_{TP} - \hat{g}_{\neg TP}(3\text{balls}) \]

\[95\% \text{ C.I.} \]

\(\hat{g}_{\neg TP} \) (3 balls) (12b). Calls under time pressure generally exhibit greater impact aversion than calls not under time pressure. In all three cases, noisy signals induce greater impact aversion than non-noisy signals.

6 Economic Significance of Umpires’ Impact Aversion

On the free agent labor market, MLB teams spend an average of $6.5M for each win that the acquired player is expected to contribute (Silver, 2014). With nearly 2500 games in each season, impact aversion need only affect the outcomes of a small number of games in order to significantly affect the economic fortunes of teams. Section 6.1 measures the number of calls that reverse in expectation as a result of the bias. Section 6.2 measures the mean distortion, and its corresponding dollar value, induced by each call.
6.1 Call reversals

A call reverses in expectation if $p < 0.5$ and $p + \hat{g}(\omega(p) \cdot \Delta) > 0.5$ or $p > 0.5$ and $p + \hat{g}(\omega(p) \cdot \Delta) < 0.5$. In the first case, the pitch is a ball in expectation according to its location, but the umpire calls it a strike more than half the time; in the second case, the pitch is a strike in expectation according to its location, but the umpire calls it a ball more than half the time.

In an average game, impact aversion reverses four calls in expectation, or one call in every forty. Calls in counts with zero balls and one strike flip most frequently, at 5.4%, followed by calls in counts with three balls and zero strikes, which reverse in 4.4% of calls. In two-strike counts, calls flip between 3.4% and 4.1% of the time. An average game comprises eighty at-bats. About half of these reach a two-strike count, and about half of those include a call with two strikes. Among at-bats in which a call is made in a two-strike count, 5.8% include at least one call that flips in expectation from a strike to a ball. Absent impact aversion, these at-bats likely would have ended in strikeouts; but 42% of these at-bats end in something other than a strikeout. Once a game, on average, an expected third strike is called a ball because of impact aversion. And once every other game, an at-bat ends in something other than a strikeout after a third strike should have been called.

6.2 Mean distortion

Our estimate of the distortion induced by impact aversion is \hat{g}. We define the mean distortion as $\frac{1}{N} \sum_{i=1}^{N} |\hat{g}(\omega(p_i) \cdot \Delta_i)|$, or the average absolute deviation in the observed calls from their baseline probabilities. The mean absolute distortion is 2.9 percentage points for all calls, which implies that the rate at which the average pitch is called a strike is 2.9

\footnote{46 p refers to the baseline probability from Equation 2. Here, \hat{g} refers to the count-specific distortion estimates from Figure 5.}

\footnote{47 As in Section 6.1, we use the count-specific distortion estimates from Figure 5.}
percentage points from an unbiased rate based on pitch location alone. This figure is higher in more asymmetrically pivotal counts. When the count has zero balls and one strike or three balls and zero strikes, the mean distortion is 5.7 percentage points. In two-strike counts, the mean distortion varies from 4.9 to 5.4 percentage points; on average, the looming impact of a strikeout makes umpires about five percentage points less likely to call strike three.

We use the mean distortion measure to quantify the financial consequences of impact aversion. If teams are willing to pay $6.5M to turn a loss into a win, then a risk-neutral team is willing to pay up to $(dp \cdot 6.5)$M for a call that increases its probability of winning by dp over the opposite call. Assume that the probability of winning is a linear function of the number of runs a team scores. We regress an indicator for whether a team wins on how many runs it scores using 26 years of game data. According to this model, an extra run increases the probability of winning by 8.6 percentage points. Hence, $dp = 0.086 \cdot |\hat{R}_s_{\text{ball}} - \hat{R}_s_{\text{strike}}|$, where \hat{R}_s is the expected runs measure in half-inning state s, and s' is the state that follows the associated call. For the average call, the absolute difference in the win probability resulting from the umpire’s choices, or $\frac{1}{N} \sum_{i=1}^{N} dp_i$, is 1.2 percentage points. This implies that on average, $75,000 hangs in the balance for each call.

We are interested in the fraction of this amount that is attributable to impact aversion.

We calculate this quantity as:

$$\frac{$6.5M}{N} \sum_{i=1}^{N} |dp_i \cdot \hat{g}(\omega(p'_i) \cdot \Delta_i)| \approx $3,000$$

Here, we weight the change in the win probability by the amount of distortion induced by $\omega(p'_i) \cdot \Delta_i$. If dp and \hat{g} were independent, this figure would be the product of $75,000 and the mean distortion estimate of 2.9%, or about $2,000. The true figure is higher because the calls that greatly affect which team is likely to win are subject to higher levels of distortion. On average, impact aversion distorts about $3,000 of team value every call.
7 Conclusion

Major League Baseball umpires are impact averse. Despite a directive and incentives from MLB to call balls and strikes based solely on pitch location, every umpire reveals an aversion to the option that more greatly changes the expected outcome of the game. Though our claims come with the usual disclaimers on findings from observational data, the most likely explanation for our results is a tradeoff between formal incentives to make the correct choice and pressure from external audiences to avoid making a mistake that proves consequential.

Judges face a similar tradeoff. The incentives to make the correct choice come from the common perspective that judges make decisions by objectively applying legal principles (Sunstein, 2013). Supreme Court Chief Justice John Roberts stated in his confirmation hearing that “Judges are like umpires...it’s my job to call balls and strikes.” 48 The American Bar Association states on its website that “Judges are like umpires in baseball...Like the ump, they call ’em as they see ’em.” 49 However, judges may respond to other motivations when they are not sure what they see. An emerging literature on the psychology of judges argues that salient information distorts judicial rulings (Bordalo, Gennaioli and Shleifer, Forthcoming). One salient factor might be the repercussions from making a mistake that proves consequential to the outcome of the case. Relative to non-pivotal mistakes, pivotal mistakes may make the case more likely to be overturned on review; they may reduce the judge’s chances of winning an election, an appointment, or a confirmation; and they may make the judge feel regret.

One way that impact aversion could manifest among judges is through decisions on the proceedings of a trial, such as decisions over motions to dismiss. A motion to dismiss asks the judge to drop a charge on grounds unrelated to a defendant’s guilt (Kaplow, 2013). 50

50 Grounds for dismissal may involve violations of due process, such as double jeopardy.
and it presents the judge with asymmetrically pivotal options. If the judge grants a motion to dismiss, the charge is dismissed; if the judge rejects the motion, prosecution of the charge continues. As with other procedural rulings, motions to dismiss are supposed to be decided based on objective criteria and without regard to impacts of the options on the outcome of the case. But each time a judge considers a motion to dismiss, she does so knowing the (immediate) consequences of her decision on the outcome of the case. If judges are impact averse, they will distort procedural rulings by avoiding options that more greatly shift the expected outcome of the case—they will reject motions to dismiss if they are at all uncertain about the defendant’s innocence. The more one option shifts the expected outcome of the case relative to the alternative, the more judges will bias their rulings. In this way, impact aversion may distort case outcomes.
A Alternative Explanations: Rational Expectations

We consider the possibility that evidence of impact aversion can be explained by umpires’ rational expectations of the forthcoming pitch. Umpires might form expectations from the long-run distribution of pitches thrown in particular counts. If pitchers tend to throw strikes in three-ball counts, umpires might expect a strike in those counts; if pitchers tend to throw balls in two-strike counts, umpires might expect balls in those counts.

Figure 13: \(\hat{f}(X|S) - \hat{f}(X|<3\text{ balls }& <2\text{ strikes}) \), for situation \(S \) listed in figure titles. The change in pitch density when the count has (a) three balls and fewer than two strikes, and (b) two strikes and fewer than three balls. The base case comprises pitches in counts with fewer than three balls and fewer than two strikes.

Indeed, pitchers do throw more strikes in three-ball counts, and fewer strikes in two-strike counts. But these deviations are limited to the center of the official strike zone, where the call is obvious. As Figure 13 shows, pitches on the edge of the official strike zone—where the biases are strongest in Figure 2—are thrown just as frequently in pivotal counts as in non-pivotal counts. Umpires may expect more strikes in three-ball counts and fewer strikes in two-strike counts, but they can rationally expect those deviations only where strikes are obvious. Where the correct call is uncertain—i.e. where umpires display the greatest bias—
pitcher tendencies do not inform umpires’ rational expectations about the forthcoming pitch.

Rational expectations may also be informed by whether the batter swings. Specifically, a batter’s decision not to swing may signal to the umpire that the pitch is a ball. Our results cannot be explained by swing signaling directly because umpires only make calls when the batter does not swing; the enforced strike zone varies, but the signal does not. Still, the rate at which batters swing in certain states may inform the umpire of the likelihood of a strike in those states. If in asymmetrically strike-pivotal states, batters swing more often, then the decision not to swing may signal that the pitch is a ball. However, the argument is uni-directional: choosing not to swing can only signal that the pitch is a ball, but in asymmetrically ball-pivotal states, we find that umpires are more likely to call strikes. Swing rates cannot explain the expansion of the strike zone when a ball would be pivotal. As with pitch location, swing rates cannot fully account for impact aversion.
References

Abdellaoui, Mohammed, Peter Klibanoff, and Lætitia Placido (Forthcoming) “Experiments on compound risk in relation to simple risk and to ambiguity,” *Management Science*.

Moskowitz, Tobias and L Jon Wertheim (2011) *Scorecasting: The hidden influences behind how sports are played and games are won*, Random House LLC.

52

