UNDERSTANDING DISPARITIES IN PUNISHMENT:
REGULATOR PREFERENCES AND EXPERTISE

KARAM KANG AND BERNARDO S. SILVEIRA

ABSTRACT. We exploit institutional changes in the enforcement of water quality regulations in California to identify and estimate a model of adverse selection where the regulator considers private benefits and external costs from violations, as well as enforcement costs. Using the estimated model, we find that, even if the regulator’s objective function were the same across dischargers, differences in the punishment of violations would mostly persist, reflecting a large heterogeneity in the dischargers’ private benefits. Moreover, introducing a one-size-fits-all policy would increase both the level and dispersion of violation frequencies, illustrating the value of employing the regulator’s knowledge about dischargers.

Keywords: Adverse Selection, Nonparametric Identification, Optimal Regulation Enforcement, Regulatory Discretion, Regulator Preferences, Semiparametric Estimation, Water Quality Regulation

JEL Classification: D78, K42, L51, L95

1. INTRODUCTION

Regulations are often written flexibly so that the authorities in charge of enforcing them can do so judiciously. For example, following a particular violation, enforcement authorities may be able to choose from a range of possible punishments, considering a host of aggravating and mitigating factors that are, at times, subjective. One reason to allow discretion in enforcement is that it might be impossible, in practice, for the written regulation to specify all possible contingencies—especially when the

Date: January 19, 2018.
Kang (email: kangk@andrew.cmu.edu): Tepper Business School, Carnegie Mellon University; Silveira (email: silveira@wustl.edu): Olin Business School, Washington University in St. Louis. We thank Gaurab Aryal, Mariagiovanna Baccara, Joseph Cullen, Mitch Downey, Barton Hamilton, Brian Kovak, Yao Luo, Isabelle Perrigne, and seminar and conference participants at Carnegie Mellon, FGV-EESP, PUC-Rio, Washington University in St Louis, the 2018 ASSA meetings, the 5th Quebec Political Economy Conference, and the 2nd Rome Junior Conference on Applied Microeconomics. We also thank Jarma Bennett at the California State Water Resources Board for her help with the data, Mary Boyd, Bill Johnson, and Bryan Thompson at the San Francisco Bay Regional Water Quality Control Board for an extensive interview on the enforcement practice, and Caroline Hopkins and Kole Reddig for research assistance.
circumstances surrounding any given violation, such as the compliance costs borne by the regulated entity and the resource-constraints faced by the enforcement authority, can vary considerably from one case to another. However, without proper incentives, regulators may pursue their own interests rather than applying their expertise to make an appropriate judgment as a social planner (Stigler, 1971; Peltzman, 1976). In this paper we identify and estimate a principal-agent model to quantify various sources of disparity in the enforcement of regulation across different entities, and to evaluate policy reforms that limit the regulator’s discretion.

To begin with, we document disparities in the punishment of water quality violations across domestic wastewater treatment facilities in California, in the context of the enforcement of the Clean Water Act and the state’s Porter-Cologne Water Quality Control Act. First, we find a large dispersion in penalties for observationally identical violations. Second, we show that facility attributes, such as its size and the average income in the county where it is located, explain a large portion of the variations in penalties, even after controlling for a variety of violation characteristics.

Becker (1968) provides a theoretical justification for disparities in punishment, by considering the optimal amount of enforcement when it is costly to impose sanctions. In the absence of such costs, the optimal punishment induces an offense level that equates the marginal private gain by the offender and the marginal social harm from the offense. With costly punishment, the optimal offense level also depends on the extent to which offenders respond to changes in penalties. Under this framework, disparities in punishment may have several, non-exclusive sources: heterogeneity in the private violation gains, the social harms of violations, the costs of punishment, and the elasticity of violations to penalties.

Our structural approach helps disentangling these sources of disparities in regulation enforcement. Since a facility chooses the extent to which it abides by the regulation, as opposed to simply deciding whether to violate it, we apply a more general law enforcement model by Mookherjee and Png (1994). For each facility, the regulator sets a penalty schedule, and, given that schedule, the facility exerts costly effort to affect the extent of compliance. The regulator knows the distribution of compliance cost types of each facility, but observes neither the realized compliance cost type nor the facility’s effort, so the penalty is a function of the violations only. In determining the penalty schedule, the regulator minimizes the sum of the facility’s expected compliance costs, the regulator’s perceived cost from environmental hazards
of violations, and the enforcement costs associated with assessing and imposing penalties. Departing from the normative framework of Becker (1968) and Mookherjee and Png (1994), we allow the latter two costs to partially reflect the regulator’s private concerns and vary by the identity of the facility, and we refer to these costs as the regulator preferences.

We use data on violations and penalties to identify and estimate the model, exploiting a set of institutional changes in the mid-2000s, which were aimed at reducing the administrative burden of enforcement and making the compliance information more accessible to the public. These changes include: the launch of a new computerized system to track and manage information about violations and enforcement; and the establishment of a new statewide office to support enforcement activities. We document that, after these changes, the average amount of penalties increased and violations became less frequent. Moreover, we find little evidence that the compliance cost structure changed during the period. This institutional feature provides a unique opportunity to identify the dischargers’ compliance cost function.

We provide conditions under which the model is non-parametrically identified. Our identification strategy is closely related to two recent papers, d’Haultfoeuille and Février (2016) and Luo, Perrigne and Vuong (forthcoming), both of which address the identification and estimation of adverse selection models. The former study focuses on the informed party, and employs exogenous variation in the contracts (which, in our application, is provided by the mid-2000s institutional changes) to identify that party’s distribution of types (the distribution of facilities’ compliance costs). Note that this approach does not rely on the regulator’s optimality. Conversely, the latter paper builds upon the optimality conditions of both the informed and non-informed parties to identify the model primitives without necessarily relying on any external variation. By combining both approaches, we identify a more general model than the ones considered by these two papers. Closely following the identification strategy, we estimate the model semi-parametrically. In this regard, our paper relates to the structural empirical literature on regulation (Wolak, 1994; Thomas, 1995; Timmins, 2002; Gagnepain and Ivaldi, 2002; Brocas, Chan and Perrigne, 2006; Gagnepain, Ivaldi and Martimort, 2013; Lim and Yurukoglu, forthcoming; Abito, 2017).

Our model estimates indicate that both the compliance costs and the regulator preferences vary considerably across the facilities. We also find evidence that the regulators tailor the enforcement policies to local residents’ preferences. If the average resident near a wastewater treatment facility places a high value on water quality, then
the regulators tend to consider the violations by that facility as more environmentally damaging and less costly to punish than those by other facilities.

Given the estimated heterogeneity in both the compliance costs and the regulator preferences, we perform a decomposition exercise to understand the observed disparities in penalties. In doing so, we consider a counterfactual scenario in which the regulator’s preferences are identical across all facilities. Not surprisingly, homogenizing the regulator’s preferences reduces the cross-facility dispersion of penalties, but only to a moderate extent: relative to the baseline scenario, the standard deviation of the distribution of expected penalties across all dischargers would fall by 5 to 15 percent. Such small reductions indicate that differences in compliance costs drive most of the heterogeneity in penalty schedules across the facilities in our sample.

In an alternative scenario, we consider a one-size-fits-all policy, in which all facilities face the same penalty schedule, regardless of their compliance costs. Under this uniform schedule, we find that both the level and the dispersion of violation frequencies would increase by 6 to 19 percent, even though the average stringency of the penalty schedule would be comparable to that under the current policy. This finding illustrates the value of regulators’ discretion in employing their knowledge on the compliance cost distributions of different facilities. Furthermore, we find that the violation increase due to this policy change would be pronounced for large facilities and those located in a densely populated area.

Our paper contributes to the empirical literature on regulatory mechanisms and the incentives of regulators. Existing studies show evidence on various determinants of enforcement stringency, including local economic conditions, public health risk, pressure from special interest groups, the political ideology of the government, and the agency budget.\footnote{See Scholz (1986); Deily and Gray (1991); Cropper, Evans, Berardi, Duca-Soares and Portney (1992); Gray and Deily (1996); Helland (1998); Agarwal, Lucca, Seru and Trebbi (2014); Gordon and Hafer (2014); Holland (2016). Recently, Burgess, Olken and Sieber (2012) and Jia and Nie (2017) provide suggestive evidence of regulatory capture in developing countries, and Leaver (2009) show that regulators’ desire to avoid public criticism can lead to inefficiency even without regulatory capture.} Note that, because the benefits and costs of a regulation are not directly observed, it is difficult to empirically evaluate the regulatory mechanism using a reduced-form approach. Our structural analysis provides a step forward to this end by separately identifying and estimating the compliance cost function of the regulated facilities and the objective function of the regulator.\footnote{Duflo, Greenstone, Pande and Ryan (2016) conducted a field experiment that doubled the inspection frequency for a random group of plants and found little improvement in environmental outcomes. They then estimate a model of regulator-plant interactions and find that regulatory discretion is...
The rest of the paper is organized as follows: Section 2 describes how the water quality regulations in California are enforced and provides details of the institutional changes. In Section 3, we present the data and some descriptive statistics. Section 4 contains the theoretical model, and Section 5 describes the identification and estimation of the structural model. Section 6 presents the estimation and counterfactual results. We conclude in Section 7.

2. Institutional Background

2.1. Water Quality Regulation and Enforcement. Both the Clean Water Act and the state’s Porter-Cologne Water Quality Control Act govern the water quality regulation in California. The former act created the National Pollutant Discharge Elimination System (NPDES) to regulate facilities that discharge pollutants from any point source, such as a pipe or a ditch, into surface waters, including lakes, rivers and the ocean. Although the program is federal, the state government has administered the program since the authorization by the Environmental Protection Agency in 1973. An NPDES permit is typically a license for a facility to discharge a specified amount of a pollutant into a receiving water under certain conditions, where the limits on the concentration of the pollutants are based on both the availability of pollution control technologies and the water quality standards of the receiving water.

Both laws require that permittees periodically submit discharge monitoring reports with information about the quantity and quality of their effluents. They are required to sample receiving waters, to perform bioassays, and to characterize and report the toxicity potential of the discharges. Enforcement actions are mostly based on these reports. Our data regarding all NPDES violations in the state during the period of 2000-2014 indicate that 95% of the recorded violations were detected from permittees’ self-reports, while the remaining 5% were detected during an inspection or triggered by a complaint, referral, or sewer overflow.

The California Water Boards, consisting of the State Water Resources Control Board and nine Regional Water Quality Control Boards, are in charge of enforcing the water quality regulations in the state. The state board oversees the regional boards, and the regional boards have primary jurisdiction in issuing permits, monitoring water valuable in the sense that treatment inspections would have been more effective had they been targeted using the regulator’s information. Although these findings are focused on the detection of violations, whereas we study penalties, both analyses show that a one-size-fits-all enforcement policy across the regulated entities does not necessarily improve the regulatory outcomes. We provide an extra dimension for understanding these results by separately assessing how regulator preferences and expertise affect the use of discretion.
quality, and taking enforcement actions against violating dischargers. The boundaries of the regional boards follow mountain chains and ridges that define watersheds.

Each regional water board consists of seven board members, who are appointed by the governor to serve four-year terms once they are confirmed by the state senate. Members of a regional water board serve part-time and conduct their business at regular meetings, which are normally held ten times per year to make decisions on water quality matters. The board members rely on the staff, most of whom are engineers, geologists, and biologists, to conduct the day-to-day tasks associated with water quality management, such as setting water quality standards, drafting permits, and conducting enforcement activities.

For an initial determination of compliance, the regional board’s staff screens the self-monitoring reports. When a violation is identified, the staff issues a formal notice of violation, which is critical in determining violations and clarifying errors, vague permit language, or other areas of disagreement between the discharger and the staff. If a violation is confirmed, the case is then evaluated for enhanced enforcement, such as an administrative civil liability (ACL), which might result in a monetary penalty. To impose an ACL, the staff must make an ACL complaint, followed by a 30-day public comment period. The notice for the comment period is posted on the water board’s website and may also be mailed to interested parties or published in a local newspaper. The discharger may waive its right to a board hearing and pay the liability, negotiate a settlement, or appear at the hearing to dispute the ACL.

The determination of the penalty amount for a violation is based on various factors, including the potential for harm to the beneficial water uses and the toxicity of the discharge, the volume and degree of the violation, the violator’s conduct, the economic benefit derived from the violation to the discharger, and the violator’s financial ability to pay. Furthermore, serious or multiple non-serious NPDES violations are subject to a mandatory minimum penalty (MMP) of $3,000 per violation. A serious violation is associated with a discharge above limits of a Group I (Group II) pollutant by 40 percent (20 percent) or more. As for non-serious violations, the minimum penalty

3Regional board members must reside in, or have a principal place of business within, the region that a given board covers. Based on the short biographical description of each regional board member available online, we find that most board members currently hold a position in a local government, a firm, or a non-profit organization. On average, a regional board consists of 4 members from the private sector (e.g., a law firm partner or a farm owner), 1-2 members from the public sector (e.g., a city council member or a mayor), and 1-2 members from the academia (e.g., a university professor).

4The list of the pollutants of Groups I and II is in Appendix A to Section 123.45 of Title 40 of the Code of Federal Regulations.
applies when such violations occur four or more times in any period of six consecutive months. There are several exceptions for these mandatory penalties, which we discuss in detail in Section 3.2.

The administrative process to investigate violations and to issue an ACL requires a fair amount of staff time. Acknowledging this administrative burden, the regulations allow that the assessed amount of an ACL may include staff costs. Out of the 1,695 ACLs during 2000-2014, there are 62 occurrences that included nonzero staff costs ranging to $201,800 in 2010 dollars, with the average being $23,700 per ACL.

2.2. **Institutional Changes in Enforcement.** Our research strategy relies on the following two institutional changes: the launching of the California Integrated Water Quality System (CIWQS) in July 2005 and the establishment of the Office of Enforcement under the state water board in July 2006. These changes have decreased the administrative costs borne by the regional water boards in enforcing the water quality regulations and increased the visibility of the boards’ enforcement activities to the public.

First, the new computer system tracks and manages information about permittees, permits, inspections, violations, and enforcement activities. It also allows online submittal of self-monitoring data by permittees and makes data available to the public through reports. Previously, dischargers would submit hard copies of the self-monitoring reports, which would then need to be manually entered into the system by the boards’ staff. This system dramatically increased efficiency and enabled more resources to be devoted to compliance.

Second, the Office of Enforcement, comprised of legal and investigative staff, was established to provide statewide enforcement and to support the regional water boards’ enforcement programs. The staff of the office regularly meet with representatives from the regional water boards to discuss enforcement matters and give feedback on enforcement approaches. Besides providing support to the regional water boards, the office has the authority to perform independent enforcement actions.

5 In November 2006, Governor Schwartzenegger was reelected. The timing of these two administrative actions by the state government may be potentially related to the incumbent governor’s reelection motives (List and Sturm, 2006), but this is beyond the scope of our analysis.

6 The introduction of the computerized system did not lead to a decrease in the government budget for the water boards. Based on the historical budget publications, available online by the state department of finance, the annual budget allocated for the support of the water boards regarding water quality issues (the item numbered as 3940-001-0001 until the 2008–9 budget or 3940-001-0439 after) has been steady at around $480 million in 2010 dollars.
2.3. **Wastewater Treatment Facilities.** We focus on the facilities that treat domestic wastewater and discharge the treated water. Based on our data, there are in total 288 such facilities that had an active NPDES permit during 2000–2014. They are responsible for the vast majority (73%) of effluent and water quality violations statewide during the period of study. A clear assessment of the compliance behavior of these facilities is thus particularly important for the better understanding of water pollution regulation in general.

Wastewater treatment facilities reduce oxygen-demanding substances, such as organic matter and ammonia, disinfect and chlorinate wastewater to decrease infectious micro-organisms, and remove phosphorus, nitrogen, and inorganic or synthetic organic chemicals. The process for treating wastewater includes a primary stage, in which solids are removed, and a secondary stage, which treats biological and dissolved organics. In addition, a tertiary stage may be used for disinfection and treatment of nitrogen, phosphorus, and other pollutants. The Clean Water Act requires municipal wastewater treatment plants to implement at least secondary stage treatment.

Even after all three stages, facilities do not always comply with the water quality regulations. The causes of violations include improper maintenance and operation, as well as insufficient investment. Both the EPA and the California water boards stress the importance of the former factor for explaining violations. We also find evidence corroborating this view by analyzing the description of corrective measures that were planned or taken following the detection of a violation in the data: out of 3,504 violations with such a description, only 30% of them were associated with a need for investment in the sense that the corrective measure description contained words related to capital investment, while the rest of the violations were associated with short-term measures.

A number of factors make it harder for some facilities to comply with the permit conditions than others. Facilities differ substantially in age and size (see Table 1 in Section 3). They also differ in their finances. For example, although the state and the federal governments provide subsidized financing to water treatment projects through

7There are 12 treatment facilities that treat non-domestic wastewater, all of which are excluded from the analyses to maintain the homogeneity of our sample.

8For details, see US Environmental Protection Agency (2004) and California State Water Resources Control Board (2010a). For example, the latter document provides details of a case in which a facility administrator employed uncertified operators and failed to provide adequate supervision to trainees, leading to permit violations.

9The keywords used to classify corrective measure descriptions into capital investment are: *capital; construct; design; fund; grant; install; invest; new; project; and upgrade.*
the Clean Water State Revolving Fund (CWSRF), facilities located in small or dis-
advantaged communities often lack the resources and in-house expertise necessary
to apply for grants and determine which types of project are the most appropriate
for their needs (California State Water Resources Control Board, 2008). Moreover,
weather conditions, which can substantially obstruct compliance efforts, vary both
across facilities and over time.

3. Descriptive Statistics

We draw data from the California Integrated Water Quality System (CIWQS) data-
base for the NPDES violations and enforcement actions during 2000–2014.10 We also
obtain county-level attributes from various sources: the California Secretary of State
website for the vote shares for ballot propositions; the American Community Survey
for average household income; the Census for population and water use, Congressional
Quarterly Press for gubernatorial election results; and the California Irrigation Man-
agement Information System for precipitation. The precipitation data are provided
at the 253 weather stations level, which we aggregate at the county level based on
the stations’ locations.

We focus on effluent or water quality violations subject to the mandatory minimum
penalty (MMP) of $3,000. During the period of study, there are in total 48,155
violation records by domestic wastewater treatment facilities, and 19,740 (41%) of
these records are subject to the MMP. Almost the entirety (99%) of the MMP records
are associated with effluent and water quality violations.11 As described in Section
2.1, MMP violations are either serious in the violation extent or chronic. Therefore,
the violations that are not subject to the MMP are relatively insignificant violations
that were not repeated more than three times within six months. These violations
tend not to result in penalties: for example, 5.3% of the non-MMP violations that
occurred in 2009 led to penalties within four years of their occurrence, while 96.4%
of the MMP violations of the same period were monetarily penalized.

Following the literature (Magat and Viscusi, 1990; Earnhart, 2004; Shimshack and
Ward, 2005; Gray and Shimshack, 2011), we assess compliance using the self-reported
data. Two important features of the NPDES program ensure the reliability of the
self-monitoring reports. First, the water boards conduct frequent inspections on the

10Data from prior to July 2005, when the water boards launched the CIWQS, were imputed retroac-
tively into the CIWQS.

11The remaining 142 MMP violation records are regarding the timing of self-reports (126), order
conditions (12), deficient monitoring (2), and enforcement actions (2).
facilities. The inspection records show that 86% of the wastewater treatment facilities in our data received at least one inspection per year. Second, intentional misreporting can be punished by criminal sanctions to the responsible employees. Notice that if an employee has accurately reported operation conditions not in compliance with the NPDES permit, he/she cannot be held liable in a civil suit because meeting the permit requirements is the responsibility of the permitted facility, not of that employee.

3.1. Compliance and Enforcement Over Time. We find that the institutional changes described in Section 2.2 are associated with an increase in both compliance and enforcement stringency. Table 1 shows these patterns. The average number of MMP violations per quarter by a domestic wastewater treatment facility decreased from 1.37 in the 2002-2005 period to 0.95 in 2009-2014, and the average penalties per effluent or water quality MMP violation within four years of the violation’s occurrence increased from $2,247 in 2000-2001 to $3,574 in 2009-2010. Note that the CIWQS database links each enforcement action with all associated violation records, which allows us to measure the enforcement stringency without having to make an assumption on the length of a lag before an enforcement action is taken.

Figure 1 provides evidence suggesting that the aggregate changes in compliance and enforcement are associated with the institutional changes in 2006. First, Panel (A) in the figure shows that the annual fraction of the facilities without an effluent or water quality MMP violation is relatively stable up until 2006, and substantially increases after that year. Second, Panel (B) shows that the average penalty per violation is stable at around $1,500 per violation in 2000–2002, and starts increasing in 2002, the first year of violations for which the four-year penalty window we consider includes the period after the 2006 institutional changes.

These changes do not seem to have been driven by a change in the concurrent compliance cost structure. Most facilities were operating well before and after 2006:

12According to Section 122.22(d) of Title 40 of the Code of Federal Regulations, employees signing any report required by the permits must make a certification that they are aware of significant penalties for submitting false information, including the possibility of fines and imprisonment for misreporting violations.

13Penalties may occur even after four years of the occurrence of a violation, but given the length of our panel data (fifteen years) and the usual length of a permit (five years), we focus on the four-year window. A large fraction of penalty actions occurs within four years: for example, based on 1,459 effluent or water quality MMP violations that occurred in 2005, the average lag before the first penalty record is 2.71 years, with a median of 2.95, a 95 percentile of 4.61, and a 99th percentile of 7.43 years.

14When a penalty action is associated with multiple violation records, we divide the amount by the number of the linked violations to calculate the penalty amount for each individual record.
Table 1. Quarterly Compliance and Enforcement per Facility

<table>
<thead>
<tr>
<th></th>
<th>Before (2000-2005)</th>
<th>Mean</th>
<th>SD</th>
<th>After (2009-2014)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any MMP violation</td>
<td>0.21</td>
<td>0.41</td>
<td></td>
<td>0.15</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Number of MMP violations</td>
<td>1.37</td>
<td>8.92</td>
<td></td>
<td>0.95</td>
<td>5.03</td>
<td></td>
</tr>
<tr>
<td>Penalty per MMP violation†</td>
<td>2,247</td>
<td>4,576</td>
<td></td>
<td>3,574</td>
<td>10,060</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table is based on the CWIQS database regarding all domestic wastewater treatment facilities that have an active NPDES permit under the Clean Water Act during 2000–2014. The unit of observation is facility-quarter, and there are 15,613 observations. For the statistics on violations, we use the sample of 2002–2005 for the period before the 2006 institutional changes and 2009–2014 for the post-change period. As for the penalty statistics, we employ the effluent or water quality MMP violations of 2000–2001 and 2009–2010 and the follow-up penalty actions for four years. We do not use the observations of 2000–2001 for analyzing the extent of compliance because we suspect that not all violation records are in the database for this early period. We also do not employ the observations of 2006–2008, acknowledging that the 2006 institutional changes may take time to be fully incorporated. The key patterns found in the table are robust to our choice of the periods. † This variable indicates the average amount of total penalty per effluent or water quality MMP violation that occurred during three months, accounting for the penalties assessed within four years of the occurrence of the violation.

Figure 1. Compliance and Enforcement

(A) Fraction of Facilities in Compliance
(B) Average Penalty per MMP Violation

Notes: Panel (A) shows the fraction of the domestic wastewater treatment facilities without an effluent or water quality MMP violation for a given year. In Panel (B), we provide the average penalty per effluent or water quality MMP violation assessed within 4 years of the occurrence of the violation. Note that the 2006 institutional changes affected the within-4-year penalty for the violations that occurred in 2002 and after. The shaded areas represent the 95 percent confidence intervals.
more than 85% of the facilities in our sample started their operation before 1988; and the permit records show that 15 wastewater treatment facilities (5%) in our data became inactive before 2006, and 8 facilities (3%) were newly registered after 2006. Based on the Census of Government Finance and Employment in 1997–2012, there has been a steady flow of capital investment for sewerage services by local governments, with an average of $1.87 billion (in 2010 dollars) per year in total.15 Given that the investment size did not markedly increase after 2006 and the population size that the facilities serve has been increasing, the data do not provide evidence that the increase in compliance after 2006 was driven by changes in the compliance cost structure of the facilities.

Given our argument that the institutional changes in 2006 were orthogonal to the wastewater treatment facilities’ compliance cost structure, we interpret the findings above as evidence that the wastewater treatment facilities responded to the penalty increase after the 2006 institutional changes by increasing compliance. This is important because most (95%) of these facilities are publicly owned and operated by cities, counties, or special districts. Even if they are not profit-maximizers, their compliance levels respond to changes in the enforcement stringency.

3.2. Discretion in Enforcement. The water quality regulations in California allow identical violations to result in different punishments. First, the regulations often specify conditions under which a violation may be exempt from penalty. For example, the California Water Code stipulates that the mandatory minimum penalty (MMP) is not administered if the violator is in compliance with an interim order, such as Cease and Desist Order (CDO) or Time Schedule Order (TSO), aimed at eventually having the violator in compliance with the original permit conditions and limits. Additional reasons for exemption include: if the wastewater treatment facility is new or reconstructed; and if the violation is caused by a natural disaster or an intentional act by a third party.16 In total, there are 32,378 effluent or water quality MMP violations by domestic wastewater facilities in 2000-2014, and 12,780 (40%) of them were exempt from the minimum penalty.17

15During the years when all governments were surveyed, the total capital expenditures for sewerage services by local governments in California are $2.24 billion (1997), $1.43 billion (2002), $2.27 billion (2007), and $1.16 billion (2012) in 2010 dollars.

16Sections 13385 (j) and (f) of the California Water Code provide the reasons for MMP exemption.

17Table 1 and Figure 1 are based on non-exempt MMP violations only, disregarding exempt violations. All our analyses below focus on non-exempt MMP violations to study regulators’ discretion.
Second, the regulations also allow regulators’ judgments to affect the monetary assessment of penalties. For example, the 2010 Water Quality Enforcement Policy, established by the state water board, describes a ten-step penalty calculation method, where the first step is to assess actual or potential harm to beneficial uses of water and to assign a score out of an integer scale from 0 to 5. Each score is associated with a brief description, which varies from “no actual or potential harm to beneficial uses” for 0 to “high threat to beneficial uses (i.e., significant impacts to aquatic life or human health), long term restrictions on beneficial uses (e.g. more than five days), high potential for chronic effects to human or ecological health” for 5. The policy recognizes, on page 10, that “with respect to liability determinations, each regional water board, and each specific case, is somewhat unique.” It also acknowledges, on the same page, that, although a consistent penalty amount is expected for standard and routine violations, for more complex matters, “the need to assess all of the applicable factors in liability determinations may yield different outcomes in cases that may have many similar facts.”

Even after taking the application of the exemption clauses in the regulation as given, we find empirical evidence that regulator discretion plays an important role in determining penalties. To start off, many violations are not penalized: about 30% of the non-exempt effluent or water quality MMP violations of 2000-2010 by the domestic wastewater treatment facilities led to no penalty within four years of their occurrence. Moreover, among those with nonzero penalty, the average penalty per violation is $2,706 (in nominal values) with the maximum amount over $100,000. To be sure, this large variation in penalty per violation observed in the data does not immediately imply a large degree of regulator discretion. This variation may also be driven by a large heterogeneity in the violation significance and severity, which are weighed in the determination of penalty amount.

To gauge the extent of regulator discretion, we look at observationally identical MMP violations in terms of the pollutant and its permitted and actual amounts of discharge for a given period (e.g. 30-day median, weekly average, etc.). Focusing on the domestic wastewater treatment facilities’ violations of 2009–2014 that resulted in a nonzero penalty, we identify 21 unique groups of identical violations by at least three distinct facilities, with a total of 79 violation records. Figure 2 presents a histogram of the percentage difference of the assigned penalty for a violation from the average

penalty for its identical violations in the group. There is a large dispersion, ranging from -86% to 61%; and 53% of the violations in the sample led to penalties that differ by more than 20% from the average penalty of their group.

This anecdotal finding suggests that seemingly identical violations may have been treated differently, but there are three caveats to consider. First, the sample size may not be large enough to generalize the finding. Second, because multiple violations are penalized at a time and the itemized penalty per violation is unavailable, we divide the assessed amount of an ACL action by the number of all violations that are affiliated with that action, and use this per-violation penalty when constructing the histogram in Figure 2. Therefore, the observed dispersion in the assigned penalties for a group of identical violations could have been driven by the heterogeneity in the nature of the other violations that were penalized along with each violation in the group. Third, the past violations that are not explicitly affiliated with an ACL action could have been factored into the penalty amount.

To address these caveats, we broaden the analysis by regressing whether there was a penalty action (Columns of (1)–(3) in Table 2) or the amount of penalty (Columns of (4)–(6) in the table) on the attributes of the associated violation, the facility, and the county where the facility is located, using all effluent or water quality MMP violations.
Table 2. Determinants of Penalty for MMP Violations

<table>
<thead>
<tr>
<th></th>
<th>Penalized Log (Penalty Amount + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Group I pollutant</td>
<td>0.0670</td>
</tr>
<tr>
<td></td>
<td>(0.0510)</td>
</tr>
<tr>
<td>Other MMP violationsa</td>
<td>0.0886</td>
</tr>
<tr>
<td></td>
<td>(0.0372)</td>
</tr>
<tr>
<td>Past MMP violationsb</td>
<td>-0.0181</td>
</tr>
<tr>
<td></td>
<td>(0.0708)</td>
</tr>
<tr>
<td>Major facilityc</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
</tr>
<tr>
<td>Log (Average income)d</td>
<td>0.759</td>
</tr>
<tr>
<td></td>
<td>(0.206)</td>
</tr>
<tr>
<td>% Turnoute</td>
<td>-0.0174</td>
</tr>
<tr>
<td></td>
<td>(0.0056)</td>
</tr>
<tr>
<td>Other violation controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Other facility controls</td>
<td>No</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>16,314</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.169</td>
</tr>
</tbody>
</table>

Notes: This table reports OLS estimates. The unit of observation is a violation. Standard errors are adjusted for two-way clustering at the county and facility levels, and are provided in parentheses; \(* p < 0.10, ** p < 0.05, *** p < 0.01.\) All non-exempt effluent or water quality MMP violations of 2000–2010 by the domestic wastewater treatment facilities are included. The dependent variables are: whether the violation led to a nonzero penalty within four years of its occurrence for Columns (1)–(3); and the logarithm of the nominal dollar value of the associated penalties plus one dollar, based on the penalty actions within the four-year window, for Columns (4)–(6). a. Other MMP violations indicates whether other MMP violations also occurred along with the given violation during the same quarter. b. Past MMP violations is a dummy variable indicating whether there were MMP violations during the past quarter. c. A major facility is defined as one with an average daily discharge greater than 1 million gallons or with a high degree of threat to water quality. d. Log (Average income) is the logarithm of the average household income in 2010 in the county where the facility is located. e. We consider the county-level turnout rate in percentage terms for the 2010 gubernatorial election. Other violation controls include whether the violation is ranked as “priority” for enforcement purposes and the total precipitation amount during the quarter in which the violation occurred. Other facility controls are the age of the facility and the county attributes such as the 2010 population density, the ratio of fresh water withdrawal for irrigation in 2010, the vote share for the 2006 ballot proposition 84 to authorize $5.4 billion in bonds to fund various water projects, and the water board region dummies.

The results reveal three important patterns that guide our model of regulation enforcement, described in the next section. First, when a given violation occurs in the same quarter as other violations by the same facility, both the probability and the amount of penalty for that violation increase. Our model allows the penalty schedule to be a (nonlinear) function of the violations that occurred during a period. In our main analysis, we consider
periods of three months to account for four seasons with varying precipitation. In a sensitivity analysis, we employ six months as a unit of period, and find our results to be robust (see Appendix C).

Second, the correlation between the penalty for a violation and the violations in the preceding quarter is not statistically significant. This motivates us to focus on a static environment, in the sense that MMP violations from past periods do not affect the enforcement of the MMP violations of the current period. As Harrington (1988) first discussed, dynamic deterrence can be effective when penalties are restricted, and, in practice, other regulatory frameworks often employ it. For example, in the Clean Air Act, penalties are larger for repeat violators (Blundell, 2017). But the results from Table 2 indicate that a static environment describes our setting very well.

Third, even after controlling for violation attributes, some facility characteristics further explain the penalty variation. For example, major facilities, which either discharge more than 1 million gallons per day on average or pose a high degree of threat to water quality, were more likely to receive a penalty and tended to receive a larger penalty than other facilities. Similarly, facilities located in a county with high average household income or low turnout for the 2010 gubernatorial election were more penalized than others for similar violations. These patterns are possibly due to such facilities having relatively high marginal compliance costs. Alternatively, the regulator may consider violations by these facilities to be particularly serious, because, for example, of their larger potential harm to nearby residents or their potential political repercussions. The structural analysis developed in the next sections allows us to decompose these distinct explanations.

4. Theoretical model

4.1. Setup. In this section, we present our theoretical model of the interaction between a regulator and a single facility. Section 5.1 clarifies how we employ this model to analyze the heterogeneity in enforcement standards across different facilities. We model regulation enforcement as an adverse selection problem, as in Mookherjee and Png (1994). Consider a wastewater treatment facility that chooses the extent to

19In Mookherjee and Png (1994), the regulators choose both a (random) monitoring frequency and a penalty schedule. Our model abstracts away from monitoring decisions and focuses on the penalty schedule. Implicitly, we assume that exogenously determined inspection activities provide incentives for firms to truthfully self-report any violation. The model is identical to the one in Mookherjee and Png (1994) with zero monitoring costs.
which it complies to regulations given a penalty schedule. We assume that the facility benefits from avoiding both compliance costs and penalty, following the evidence from Section 3.1 that the facilities reduced the frequency of violations in response to an increase in penalty. The facility is better informed than the regulator about its compliance costs. Specifically, each facility is endowed with a type, θ, which is known to the facility only. The regulator knows that θ is the realization of a random variable Θ that follows a strictly increasing and continuously differentiable distribution function $F(\cdot)$ with support $(0, \bar{\theta})$. Let $f(\cdot)$ be the associated density.

The facility sets a negligence level $a \in [0, \bar{a}]$, which is not observed by the regulator and affects the facility’s compliance status in the following manner: let K be a random variable representing the number of emission violations incurred by the facility, and assume that K follows a Poisson distribution with mean a. By setting the negligence level a, the facility derives private benefit $\theta b(a)$, which reflects the operation cost savings associated with lower compliance. In the reminder of the paper, we refer to this private benefit as the facility’s compliance costs.\(^{20}\) Note that because the facilities in our data are often publicly owned, $\theta b(a)$ could be different from the actual operational cost savings from emitting more pollutants to the waters, reflecting the career concerns of the facility administrators and the scrutiny from the public.

Because the realization θ and the consequent negligence level a are not known by the regulator, a penalty schedule depends on the realized number of violations only. Given k violations, the facility has to pay the penalty according to a random function $\epsilon(k)$.\(^ {21}\) Assuming that the facility is risk-neutral, we can restrict our attention to the expected penalty, conditional on a, which we denote by

$$e(a) \equiv \exp(-a) \sum_{k=0}^{\infty} \frac{\mathbb{E}[\epsilon(k)]}{k!} a^k.$$ \hspace{1cm} (1)

The payoff to a facility setting the negligence level a is

$$\theta b(a) - e(a).$$ \hspace{1cm} (2)

We define that a negligence schedule, $a(\cdot)$, is implemented by a penalty schedule $e(\cdot)$ if $a(\theta)$ maximizes (2) for all $\theta \in \Theta$. Notice that, if $a(\cdot)$ is implemented by $e(\cdot)$, we

\(^{20}\)Let us denote the benefit from maximum negligence or no compliance efforts as $\theta \bar{b}$. This means that no negligence or full compliance efforts would cost the facility $\theta \bar{b}$. By choosing some negligence level a, the facility avoids incurring some compliance costs, $\theta b(a)$, leading to the total compliance cost of $\theta [\bar{b} - b(a)]$.

\(^{21}\)This is to reflect that facilities with the same non-exempt MMP violations do not always face the same amount of penalty, even after controlling for observed attributes, as discussed in Section 3.2.
have that
\[\theta b'[a(\theta)] = e'[a(\theta)], \] (3)
whenever \(a(\theta) > 0.\)

Given a penalty schedule \(e(\cdot), \) the regulator’s expected costs are
\[\int_0^\theta \{ h[a(\theta)] + \psi e[a(\theta)] - \theta b[a(\theta)] \} f(\theta) d\theta, \] (4)
where \(\psi > 0 \) denotes the marginal cost of imposing penalty, and \(h(\cdot) \) represents the regulator’s perceived environmental costs related to the facility emission violations.\(^{22}\)

The enforcement costs, given by \(\psi e[a(\theta)] \), comprise the administrative and political costs associated with taking formal actions against a facility.\(^{23,24}\) Notice that \(h(\cdot) \) and \(\psi > 0 \) may reflect both public and private concerns.

For any continuous \(e(\cdot), \) from the Weierstrass approximation theorem, the regulator can select a sequence of polynomials \(\{ \sum_{k=0}^K \frac{E[e_k(k)]}{k!} a^k \}_{K \in \mathbb{N}} \) such that \(e(a) \exp(a) = \lim_{K \to \infty} \sum_{k=0}^K \frac{E[e_k(k)]}{k!} a^k \) (Royden and Fitzpatrick, 1988). Thus, by appropriately choosing \(e(\cdot), \) the regulator is able to set any continuous enforcement schedule. In the reminder of the paper, we define the regulator’s problem as choosing \(e(\cdot), \) subject to the constraint that the expected penalty for any \(a \) must be nonnegative and not exceed the facility’s maximum amount of funds, \(\omega: \]
\[0 \leq e(a) \leq \omega, \] (5)

\(^{22}\)In our model, we assume that the regulator regards all violation by the same facility as identical to each other. In Appendix C, we re-estimate the model, allowing for heterogeneity in the perceived harm of violations within a facility. Our key empirical findings persist.

\(^{23}\)We assume that the marginal enforcement cost \((\psi) \) is exogenous, i.e., not affected by the aggregate frequency of violations in equilibrium. The literature on crime, conversely, often treats these costs as endogenously determined by the policy maker’s allocation of resources to law enforcement and the individuals’ choices on criminal activities (see Fu and Wolpin (forthcoming) and the references therein). In environmental regulation, non-administrative costs that might be out of the regulator’s control, such as those associated with the political repercussions of enforcement actions, may explain a large part of the enforcement costs.

\(^{24}\)Money raised from penalties is generally deposited in the Cleanup and Abatement Account, a fund managed by the state board from which the regional boards may request money for a project. Alternatively, publicly owned wastewater treatment facilities in small communities may be allowed to recover part of the amount they pay in penalties for compliance or supplemental environmental projects. Our analysis does not distinguish between these potential destinations of the penalties, since all facilities are liable to pay the penalty amount regardless. However, the possibility that some facilities are able to partially recover the penalties is one of the reasons why, in the empirical model presented in Section 5, the enforcement cost borne by the regulator may vary by facility attributes, such as the location of a facility.
for any \(a \). The optimal penalty schedule minimizes (4), subject to constraints that the schedule satisfies (5) and that it implements the negligence schedule \(a(\cdot) \).

4.2. Characterization of Optimal Enforcement. We make the following assumptions on the facility’s baseline compliance cost function, \(b(\cdot) \), and the regulator’s preference on water quality, \(h(\cdot) \).

Assumption 1. \(b(\cdot) \) and \(h(\cdot) \) are strictly increasing.

Let \(\bar{b} \) denote \(b(\bar{a}) \), and notice that, by Assumption 1, \(b(\cdot) \) is bounded above by \(\bar{b} \) in \([0, \bar{a}]\). Under Assumption 1, it can be shown that a schedule of negligence choices, \(a(\cdot) \), is implemented if and only if \(a(\cdot) \) is nondecreasing and satisfies

\[
\omega \geq \bar{b} - \int_0^{\bar{a}} b[a(\theta)]d\theta,
\]

and the requisite expected penalty schedule is

\[
e(a) = \theta(a)b(a) - \int_0^{\theta(a)} b[a(v)]dv,
\]

where \(\theta(a) \) denotes the highest type \(\theta \) selecting an \(a(\theta) \leq a \). For a proof, see the Lemma in Mookherjee and Png (1994). By this argument, the regulator chooses a schedule of negligence, \(a(\cdot) \), to minimize

\[
\int_0^{\bar{a}} \left\{ h[a(\theta)] + \psi \left(\theta b[a(\theta)] - \int_0^{\theta(a)} b[a(v)]dv \right) - \theta b[a(\theta)] \right\} f(\theta)d\theta,
\]

subject to \(a(\cdot) \) being nondecreasing and (6). For simplicity we assume that (6) is not binding at the optimum. By using integration by parts, we rewrite (8) as

\[
\int_0^{\bar{a}} \left\{ h[a(\theta)] - \left((1 - \psi)\theta + \frac{\psi[1 - F(\theta)]}{f(\theta)} \right) b[a(\theta)] \right\} f(\theta)d\theta.
\]

We then consider point-wise optimization for each \(\theta \), and thus either \(a(\theta) = 0 \) or \(a(\theta) \) satisfies the first order condition:

\[
h'[a(\theta)] - b'[a(\theta)] \left((1 - \psi)\theta + \frac{\psi[1 - F(\theta)]}{f(\theta)} \right) = 0.
\]

\(^{25} \)Because a facility receives a penalty based on the realized number of violations, the limited liability condition must hold regardless of the realized number of violations, i.e., \(\epsilon(k) \leq \omega \) for any \(k = 0, 1, 2, \ldots \). If this condition is satisfied, then the penalty schedule \(e(\cdot) \) is bounded above by \(\omega \).

\(^{26} \)Note that an individual rationality condition is not considered here. At optimum, \(\lim_{\theta \to 0} e(\theta) = 0 \), so the indirect (maximized) utility for any \(\theta \in (0, \bar{\theta}) \) is nonnegative.
By totally differentiating (9), one can see that the following assumption, along with Assumption 1, is sufficient to guarantee that the negligence schedule characterized above, denoted by \(a^*(\cdot) \), is optimal and strictly increasing in \(\theta \) for any \(\theta \) such that \(a^*(\theta) > 0 \).

Assumption 2. (i) \((1 - \psi)\theta + \frac{\psi(1-F(\theta))}{f(\theta)}\) is strictly increasing in \(\theta \). (ii) The second order conditions for (3) and (9) are satisfied for all \(\theta \in [0, \bar{\theta}] \).

The following proposition summarizes the characterization of the optimal negligence schedule.

Proposition 1. Under Assumptions 1–2, the optimal negligence schedule, \(a^*(\cdot) \), is continuous and nondecreasing in \(\theta \). For \(\theta \) such that \(a^*(\theta) > 0 \), \(a^*(\cdot) \) is characterized by (9) and strictly increasing in \(\theta \).

5. **Structural model**

5.1. **Data generating process.** There are one regulator and many facilities, which we index by \(i \). Periods are indexed by \(t \). Assume that \(\Theta \) is i.i.d. across facilities and periods.\(^{27}\) To reflect the institutional changes discussed in Section 2.2, we allow the primitives characterizing the regulator to vary across periods. The regulator sets the optimal penalty schedule, as described in Section 4. Because of the potential changes in the primitives, the solution to the regulator’s problem can also change over time. We denote by \(e_t(\cdot) \) the penalty schedule in period \(t \). Given \(e_t(\cdot) \) and a realization of \(\Theta \), each facility \(i \) sets its optimal negligence level. As \(\Theta \) is a random variable, the equilibrium negligence set by facility \(i \) in period \(t \) is also a random variable, which we denote by \(A_{i,t} \). Let \(G_t(\cdot) \) be the distribution of negligence levels across the population of facilities in period \(t \).

The primitives of the model are: \(F(\cdot) \), the distribution of facilities’ types; \(b(\cdot) \), the baseline compliance cost function; the regulator’s perceived social cost of violations (or negligence), \(h_t(\cdot) \); and the marginal enforcement cost, \(\psi_t \). To address the heterogeneity in enforcement standards across the facilities in the data, we allow all model primitives and equilibrium objects to vary with observable facility-period characteristics. For ease of notation, we do not explicitly condition the model primitives on

\(^{27}\)By this assumption, each facility independently draws its type every period. An alternative assumption is that the facilities’ types are constant over time and the regulator commits not to exploit the information on the facility type obtained in the previous periods. Our identification argument holds under either of these two assumptions, which are both consistent with the static penalty schedules in the data (Table 2).
these characteristics in the discussion of identification below. The observables are: $K_{i,t}$, the number of violations in period t for each facility i; and the penalty assessed due to facility i’s violations in period t.

5.2. Identification. For the identification of the model, we follow three steps. First we recover the distribution of negligence levels set by the facilities in each period, based on the observed violations. The second step, following the strategy proposed by d’Haultfoeuille and Février (2016), employs the exogenous change in the penalty schedule associated with the 2006 institutional changes to partially identify the facility type distribution and the marginal compliance cost function. Note that this step does not rely on any assumption about the regulator’s behavior, other than testable assumptions on the observed penalty schedule $e_t(\cdot)$.

The third step, which builds upon the approach by Luo, Perrigne and Vuong (forthcoming), explores the restrictions imposed by the first-order conditions of the regulator to recover the marginal social cost of negligence and the marginal enforcement cost, as well as to achieve exact identification of the type distribution and the marginal compliance cost function. By exploiting the exogenous variations in the penalty schedule, we are able to consider a more flexible form for the regulator’s objective function than would be possible using their approach alone. In particular, they assume that $h(\cdot)$ (the monopolist’s cost function in their setting) is linear, whereas we can accommodate a polynomial specification of arbitrary degree.

We restrict our attention to the case where it is optimal for all facilities to choose a nonzero rate of violations, or $a_t(\theta) > 0$, for any period t and $\theta \in (0, \theta]$. A sufficient condition to guarantee that $a(\theta) > 0$ for any θ is $\lim_{\theta \to 0} b'(0)\psi - h'(0)f(\theta) < 0$. Our identification argument can be extended to accommodate a corner solution (or complete compliance, with $a_t = 0$). But, even without allowing corner solutions, our estimated model, reported in Section 6.1, fits the data very well.\footnote{In the data, 10 percent of the facilities that were active during all the 60 quarters in our sample period (2000–2014) were always in compliance. Note that, if the number of violations follows a Poisson distribution with mean a, a facility that sets $a = 0.001$ will have no violations during 60 periods with probability $\exp(-0.001 \times 60) = 0.94$.}

We begin by noticing that, given any period t, the distribution of the number of violations by any facility is a mixture Poisson. Indeed, a facility chosen at random sets a negligence level according to the distribution $G_t(\cdot)$, and, given the negligence level, the number of violations for that facility follows a Poisson distribution. The following lemma establishes the identification of $G_t(\cdot)$ from the observed number of violations across facilities. To prove this lemma, we exploit the moment generating function of
the Poisson distribution, which was also used in Aryal, Perrigne and Vuong (2017). See Appendix A for the proofs of the lemmas and the propositions in this section.

Lemma 1. For every t, $G_t(\cdot)$ is identified.

Having identified the distribution of negligence levels in each period, our strategy to partially identify $b'(\cdot)$ and $F(\cdot)$ closely follows that proposed by d’Haultfoeuille and Février (2016). We consider two enforcement regimes, before and after the 2006 institutional changes, and assume that, within each regime, the penalty schedule does not change. Formally, we make the following assumption on $e_t(\cdot)$, the expected penalty in period t, as a function of the negligence level set by the facilities:

Assumption 3. $e_t(\cdot) = e_{pre}(\cdot)$ for all $t < 2006$. Similarly $e_t(\cdot) = e_{post}(\cdot)$ for all $t > 2008$. Moreover, $e'_{post}(a) > e'_{pre}(a)$ for all $a > 0$.

We can compute the expected penalty, given any number of violations, in each period. From (1), therefore, we readily identify the functions $e_{pre}(\cdot)$ and $e_{post}(\cdot)$, so Assumption 3 is testable. The latter part of the assumption implies that the enforcement regime becomes stricter after the institutional changes. We exclude the period of 2006-2008 as a transition period, although such an exclusion is not necessary and the length of the transition period can be adjusted. Notice that, in the definition of the model primitives, we assumed that $F(\cdot)$ and $b(\cdot)$ do not change over the entire time period covered by our sample, which is analogous to an exclusion restriction.

Under Assumption 3, any facility of a given type θ sets at most two different negligence levels—one for each of the two enforcement regimes. Accordingly, we denote by $G_j(\cdot)$ the distribution of negligence levels holding in period $j \in \{pre, post\}$, where, as above, pre refers to $t < 2006$ and $post$ to $t > 2008$. Also, we denote by $\tilde{a}(\cdot,j)$ the equilibrium negligence function in period $j \in \{pre, post\}$. From equation (3), it is clear that $\tilde{a}(\theta, pre) > \tilde{a}(\theta, post)$ for all θ. Let the supports of the negligence level distributions before and after the regime change be given by A_{pre} and A_{post}, respectively. We assume that $A_{pre} \cap A_{post} \neq \emptyset$.

The strategy described below, and formalized in Proposition 2, allows us to partially recover $b'(\cdot)$ and $F(\cdot)$ without making any assumptions about the behavior of the regulator. Define the function $\tilde{\theta}(a,j)$ as the inverse of $\tilde{a}(\cdot,j)$ for any $a \in A_j$. Define also the following two functions:

$$T^H(a) \equiv G_{pre}^{-1}[G_{post}(a)],$$

(10)
\[T^V(\theta, a) = \frac{e'_{\text{post}}(a)}{e'_{\text{pre}}(a)} \theta. \] (11)

Notice that \(T^H(\cdot) \) is defined for any \(a \in A_{\text{pre}} \cap A_{\text{post}} \), while \(T^V(\cdot, \cdot) \) is identified over the entire domain of \(a \) and \(\theta \). The following lemma plays a key role in the identification of \(b'(\cdot) \) and \(F(\cdot) \):

Lemma 2. Under Assumptions 1–3, we have that \(T^H(a) = \tilde{a} \left[\tilde{\theta}(a, \text{post}), \text{pre} \right] \) for \(a \in A_{\text{pre}} \cap A_{\text{post}} \), and \(T^V \left[\tilde{\theta}(a, \text{pre}), a \right] = \tilde{\theta}(a, \text{post}) \) for any \(a \in A_{\text{pre}} \).

This lemma establishes that \(T^H(a) \) returns the negligence exerted in the \textit{pre} regime by a facility type that, while in the \textit{post} regime, exerted negligence level \(a \); and \(T^V \left[\tilde{\theta}(a, \text{pre}), a \right] \) returns the type that exerts negligence level \(a \) in the \textit{post} regime.

To partially identify \(F(\cdot) \) and \(b'(\cdot) \), we normalize \(\tilde{\theta}(a_0, \text{post}) = \theta_0 = 1 \) for some \(a_0 \in A_{\text{post}} \), and then define recursively:

\[a_l = T^H(a_{l-1}), \]
\[\theta_l = T^V (\theta_{l-1}, a_l). \]

The transform \(T^H(\cdot) \) connects points in the negligence distribution supports in both regimes. Notice that for any \(a \in A_{\text{post}} \), \(T^H(a) \in A_{\text{pre}} \). However, under Assumption 3, we have that \(T^V \left[\tilde{\theta}(a, \text{pre}), a \right] > \tilde{\theta} \) for \(a > \max(A_{\text{post}}) \); i.e., there are relatively high negligence levels that, in equilibrium, are only set in the \textit{pre} regime. Let \(\tilde{L} \) be largest integer such that \(T^H(a_{\tilde{L}}) \in A_{\text{post}} \). We are now ready to state the following result.

Proposition 2. Suppose Assumptions 1–3 hold. Then, for any \(l \in \{0, 1, \ldots, \tilde{L}\} \) and \(j \in \{\text{pre}, \text{post}\} \), the following objects are identified up to the normalization \(\theta_0 = 1 \): (i) the equilibrium negligence level, \(\tilde{a}(\theta_l, j) \); (ii) the distribution of cost types, \(F(\theta_l) \); and (iii) the marginal baseline compliance cost function, \(b'(\tilde{a}(\theta_l, j)) \).

Notice that, under the assumptions of Proposition 2, \(F(\cdot) \) and \(b'(\cdot) \) are only identified over a finite set of values. The set is finite due to the boundedness of the type space, and the exact number of values at which the functions are identified depends on the shape of the functions \(\tilde{a}(\cdot, \text{pre}) \) and \(\tilde{a}(\cdot, \text{post}) \).

To complete the identification of the model, we must explicitly consider the regulator’s problem. We begin by making the following simplifying assumption:

Assumption 4. (i) \(h_t(\cdot) = h_{\text{pre}}(\cdot) \) and \(\psi_t = \psi_{\text{pre}} \) for all \(t < 2006 \), and \(h_t(\cdot) = h_{\text{post}}(\cdot) \), \(\psi_t = \psi_{\text{post}} \) for all \(t > 2008 \). (ii) For \(j \in \{\text{pre}, \text{post}\} \), the function \(h_j(a) \) is a polynomial function of a finite degree \(R \) with \(h_j(0) = 0 \); i.e., \(h_j(a) = \sum_{r=1}^{R} \gamma_j r a^r \) for any \(R \).
Assumption 4 (i) implies that all the primitives of the model are constant within each of the two regimes. Assumption 4 (ii) imposes a flexible parametric structure to the regulator’s costs of emissions. Notice that it implies \(h_j(0) = 0 \), for \(j \in \{ \text{pre, post} \} \).

We also make the following technical assumption on the equilibrium penalty schedule, which guarantees that we can employ the fist-order conditions from the regulator’s problem to recover \(\psi_j \) and \(\gamma_{j,r} \), for \(j \in \{ \text{pre, post} \} \) and \(r \in \{ 1, \ldots, R \} \):

Assumption 5. There is an interval \(U \in \mathbb{R}_+ \) such that the functions \(\tilde{E}_0(a) \equiv \frac{e_{\text{post}}'(a)}{e_{\text{pre}}'(a)} \) and \(\tilde{E}_{j,r}(a) \equiv \frac{a_r}{e_j'(a)} \) for all \(r \in \{ 1, \ldots, R \} \) are strictly monotone in \(a \in U \).

We can now state the following proposition.

Proposition 3. Suppose Assumptions 1–5 hold. Then, if \(\bar{L} \geq 1 \), the following objects are identified up to the normalization \(\tilde{h}(a_0, \text{post}) = 1 \) for some \(a_0 \in A_{\text{post}} \): (i) the distribution of facilities’ types, \(F(\cdot) \); (ii) the derivative of the baseline compliance cost function, \(b'(a) \) for any \(a \in A_{\text{pre}} \cup A_{\text{post}} \); and (iii) the parameters of the regulator’s objective function, \(\{ \gamma_{j,r} \}_{r=1}^R \) and \(\psi_j \), for \(j \in \{ \text{pre, post} \} \).

In a nutshell, we first identify the parameters of \(h_j(\cdot) \) and \(\psi_j \) based on (9), the first order condition of the regulator, evaluated at the vector \(\{ \theta_i \}_{i=0}^L \) for which \(\tilde{a}(\theta_i, \text{pre}) \) and \(\tilde{a}(\theta_i, \text{post}) \) are known from Proposition 2. The main challenge in the process is that \(f(\theta_i) \) is not yet identified. To address the challenge, we exploit the relationship between a density and its quantile function, a technique that has been employed by Luo, Perrigne and Vuong (forthcoming). Once the regulator’s objective function parameters are identified, we recover \(F(\cdot) \) and \(b'(\cdot) \) from (9).

5.3. **Semiparametric Estimation.** As discussed in Section 5.1, we allow the primitives of the model to vary with observable attributes of the facilities. With this intent, let \(x_{i,t} \) denote the observed characteristics of facility \(i \) in quarter \(t \). The vector \(x_{i,t} \) includes characteristics such as the facility’s age, the average household income in the county where the facility is located and the county-level turnout rate in the 2010 gubernatorial elections (see Table 3 on Section 6.1 for a complete list).

The procedure consists of four steps. First, we parametrically estimate the penalty schedules and the distribution of negligence levels before and after the 2006 institutional changes. Although these objects can be nonparametrically estimated in principle, our sample size and our intent to condition the estimates on \(x_{i,t} \) render such an approach infeasible. We assume that the expected penalties \(\mathbb{E}[e_{\text{pre}}(k|x)] \) and
\[E[\epsilon_{post}(k\mid x)] \] take the following functional form:

\[
E[\epsilon_j(k\mid x_{i,t})] = \begin{cases}
\phi_0 + \phi_{1,j}k + \phi_{2,x_{i,t}}, & \text{if } k > 0 \\
0, & \text{if } k = 0
\end{cases}
\] (12)

for \(j \in \{pre, post\} \). Under Assumption 1, \(\phi_{1,j} > 0 \) and \(\phi_0 + \phi_{2,x_{i,t}} > 0 \) for all \(j \) and \(x_{i,t} \). We thus estimate (12) using a constrained OLS, ensuring that these conditions are satisfied.

To estimate the negligence level distributions, \(G_{pre}(\cdot\mid x_{i,t}) \) and \(G_{post}(\cdot\mid x_{i,t}) \), we assume that the number of emission violations follows a Poisson-Gamma mixture distribution. Formally, let \(\nu_{i,t} \) follow a gamma distribution with density

\[
\frac{\delta^\delta}{\Gamma(\delta)} \nu_{i,t}^{\delta-1} \exp(-\nu_{i,t}^\delta),
\]

where \(\delta \) is a positive parameter. Assume that \(\nu_{i,t} \) is i.i.d. across facilities and over periods. Assume also that the distribution of violations by facility \(i \) in period \(t \), conditional on \(\nu_{i,t} \) and \(x_{i,t} \), follows a Poisson distribution with mean

\[
\nu_{i,t} \exp(\beta_{0,j} + \beta_1 x_{i,t}),
\] (13)

where \(j \in \{pre, post\} \). This distribution of violations is equivalent to a negative binomial distribution with mean \(\exp(\beta_{0,j} + \beta_1 x_{i,t}) \) and variance \(\exp(\beta_{0,j} + \beta_1 x_{i,t}) (1 + \nu_{i,t}^{-1} \exp(\beta_{0,j} + \beta_1 x_{i,t})) \). Then the estimation of the distribution of negligence levels amounts to estimating the parameters \(\delta, \beta_{pre}, \) and \(\beta_{post} \). We estimate these parameters by MLE. See Cameron and Trivedi (2013) for details about this estimator.

The remaining steps of the estimation procedure closely follow the identification strategy in Section 5.2. We employ the estimates in the first step and Proposition 2 to compute estimates of \(\tilde{\theta}(a, pre) \) and \(\tilde{\theta}(a, post) \) for a finite set of negligence levels \(a \). Then, we estimate the parameters of the regulator’s objective function, using the regulator’s first order condition (9) evaluated at the estimates from steps one and two.

In our empirical analysis, we constrain the social costs of negligence as perceived by the regulator to be a linear function. After experimenting with polynomials of degrees two to four, we find that none of these flexible specifications performed better than the linear one in terms of fitting the data. Finally, employing the estimates from all previous steps, we nonparametrically estimate the distribution of cost types and the baseline compliance cost function, following Proposition 3. Appendix B describes in detail each step of the estimation procedure.
In sum, for any vector of observable attributes $x_{i,t}$, we obtain estimates of the following model primitives: the functions $F(\cdot|x_{i,t})$ and $b'(\alpha|x)$, which characterize the distribution of facility compliance costs; and the scalars $\gamma_{pre}(x_{i,t}), \gamma_{post}(x_{i,t}), \psi_{pre}(x_{i,t})$ and $\psi_{post}(x_{i,t})$, which characterize the regulator preferences before and after the 2006 institutional changes.

6. Results

6.1. Estimates and Model Fit. Table 3 presents the penalty schedule estimates, ϕ’s in (12), and the estimates of the negligence distributions, δ and β’s in (13). Consistent with the preliminary results discussed in Section 3, the estimated slope of the penalty schedule after the 2006 institutional changes ($\hat{\phi}_{1,post}$) is larger than its counterpart before 2006 ($\hat{\phi}_{1,pre}$). That is, given the same number of violations, a facility expects to pay a higher penalty in the period following the changes, relative to the prior periods. Furthermore, $\hat{\beta}_{0,pre} - \hat{\beta}_{0,post} < 0$; the facilities decrease negligence levels after the changes.

Given these first-stage estimates, we proceed with the remaining steps to estimate the model primitives. We do so separately for each of the 264 facilities that were active in the first quarter of 2005. The estimated model fits the data well. Table 4 compares the distributions of the number of quarterly violations and average quarterly penalty, as predicted by the estimated model, with the counterpart distributions observed in the data. The estimated model is able to reproduce both the high probability of no violations at the facility-quarter level and the shift in the distribution of violations and penalties that took place following the 2006 institutional changes.

We find that the estimated primitives for each of the facilities in the data satisfy Assumptions 1 and 2 from Section 4. Recall that these assumptions ensure that the equilibrium negligence levels set by the facilities are increasing in the compliance cost type, which is important in our identification strategy, as discussed in Section 5.2.

Table 5 presents the summary statistics of our estimates of the primitives of the model: the marginal compliance costs and regulator preferences (γ and ψ) for the periods before and after the 2006 institutional changes. Recall that we separately estimate the primitives for each facility. Accordingly, we calculate the summary statistics over the facilities. Noting that our model primitives include the marginal compliance cost function and the cost type distribution, we report the median marginal compliance costs evaluated at a negligence level equal to one, i.e., $Med(\Theta)b'(1)$.
Table 3. Enforcement Schedule and Negligence Distribution Estimates

<table>
<thead>
<tr>
<th>Penalty Schedule(\dagger)</th>
<th>Negligence Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_{1,\text{pre}})</td>
<td>475.99 (203.36)</td>
</tr>
<tr>
<td>(\phi_{1,\text{post}})</td>
<td>2,643.35 (136.06)</td>
</tr>
<tr>
<td>(\beta_{0,\text{post}} - \beta_{0,\text{pre}})</td>
<td>-0.62 (0.09)</td>
</tr>
<tr>
<td>(\delta)</td>
<td>12.18 (0.49)</td>
</tr>
</tbody>
</table>

\(\phi_2\)'s and \(\beta_1\)'s:

<table>
<thead>
<tr>
<th></th>
<th>Penalty Schedule(\dagger)</th>
<th>Negligence Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major facility</td>
<td>7,329.09 (1,912.03)</td>
<td>0.03 (0.10)</td>
</tr>
<tr>
<td>First permitted in 1982-1987</td>
<td>521.46 (966.83)</td>
<td>-0.19 (0.14)</td>
</tr>
<tr>
<td>First permitted after 1987</td>
<td>10,890.51 (5,946.32)</td>
<td>-0.48 (0.24)</td>
</tr>
<tr>
<td>Total precipitation (in inches)</td>
<td>0.00 (15.88)</td>
<td>0.02 (0.01)</td>
</tr>
<tr>
<td>Average household income (log, in $)</td>
<td>370.80 (4,480.90)</td>
<td>3.93 (0.43)</td>
</tr>
<tr>
<td>Population density per sq. miles (log)</td>
<td>914.47 (1,034.07)</td>
<td>0.05 (0.10)</td>
</tr>
<tr>
<td>Irrigation water use (%)</td>
<td>68.97 (3,800.59)</td>
<td>2.37 (0.29)</td>
</tr>
<tr>
<td>Turnout (%)</td>
<td>98.95 (137.06)</td>
<td>-0.05 (0.01)</td>
</tr>
<tr>
<td>Proposition for water project bonds (%)</td>
<td>-48.40 (90.78)</td>
<td>-0.09 (0.01)</td>
</tr>
</tbody>
</table>

Regional water board fixed effects: Yes, Yes

Number of observations: 837, 8,195

Notes: Unit of analysis is at the facility-quarter level. Bootstrap standard errors are in parentheses. The second column presents the parameters of the penalty schedules in (13), estimated by constrained OLS. The dependent variable is the total amount of penalties associated to effluent or water quality MMP violations occurring in the quarter. We employ facility-quarter observations in the periods of 2000-2001 and 2009-2010. In Appendix C, instead, we use the periods of 2000–2002 and 2009-2011, and consider a three-year penalty window, as opposed to a four-year window. This alternative specification provides results that are similar to the ones shown in the main text. The third column presents the estimated parameters of the negligence distributions, based on a Poisson-Gamma regression in which the dependent variable is the number of effluent or water quality MMP violations occurring in the quarter. In this estimation, we employ all facility-quarter observations in the periods 2002-2005 and 2011-2014. See the notes on other facility controls in Table 2 for a description of the regressors. \(\dagger\): Measured in 2010 USD.

There are two notable aspects in the results in Table 5. First, our estimates imply that the increase in enforcement stringency after the 2006 institutional changes, as documented in Table 1 and Figure 1, is rationalized both by a decrease of the marginal enforcement costs and an increase of the marginal social/environmental costs as perceived by the regulator. The computerized information system and the support from the Office of Enforcement may have reduced the administrative burden of imposing penalties borne by each regulator in the regional water boards. At the same
Table 4. Model Fit

<table>
<thead>
<tr>
<th>Number of violations</th>
<th>Before Data</th>
<th>Model</th>
<th>After Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.79</td>
<td>0.80</td>
<td>0.86</td>
<td>0.83</td>
</tr>
<tr>
<td>1</td>
<td>0.07</td>
<td>0.06</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>2</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>3</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>5 and more</td>
<td>0.07</td>
<td>0.08</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Notes: This table provides the estimated distributions of the number of violations and the average quarterly penalty across all facilities, unconditional on the occurrence of a violation, as observed in the data and predicted by the fitted model.

Table 5. Model Primitive Estimates: Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Interquantile Range</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal compliance cost</td>
<td>2,041</td>
<td>1,729</td>
<td>2,595</td>
<td>224</td>
<td>8,774</td>
</tr>
<tr>
<td>Perceived marginal social cost (γ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before the 2006 changes</td>
<td>2,390</td>
<td>1,314</td>
<td>2,631</td>
<td>176</td>
<td>15,714</td>
</tr>
<tr>
<td>After the 2006 changes</td>
<td>5,956</td>
<td>1,703</td>
<td>3,360</td>
<td>526</td>
<td>19,078</td>
</tr>
<tr>
<td>Marginal enforcement cost (ψ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before the 2006 changes</td>
<td>1.11</td>
<td>0.06</td>
<td>0.10</td>
<td>0.92</td>
<td>1.35</td>
</tr>
<tr>
<td>After the 2006 changes</td>
<td>1.08</td>
<td>0.05</td>
<td>0.09</td>
<td>0.83</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Notes: We estimate the compliance cost function, the distribution of cost types and the regulator preference parameters for each of the 264 facilities that were active in the first quarter of 2005. This table provides the summary statistics of the marginal compliance cost evaluated at a negligence level equal to one (\(\text{Med}(\Theta)b'(1)\)) and the regulator preference parameters (γ, ψ), before and after the 2006 institutional changes. Bootstrap standard errors for the mean values of the estimates are in parenthesis.

At the same time, the institutional changes may have increased the pressure by the state government and the public to improve compliance, leading to an increase in the perceived environmental cost of a violation.

Second, the estimated marginal compliance costs and regulator preferences vary considerably across facilities. Assuming that the realized cost type θ is the median value, conditional on the observed facility attributes, the marginal compliance cost when a facility’s negligence level leads to, on average, one violation per quarter varies from $224 to $8,774, with mean $2,041 and standard deviation $1,729. Based on the
minimum and the maximum values of the estimated γ’s after the 2006 changes, the regulators’ perceived environmental costs per violation for a facility can be 36 times as high as those for another facility. Similarly, the range of values of the estimated ψ’s after the changes indicates that the regulators’ costs associated with imposing an extra dollar of penalty to a facility can be 1.6 times as large as those for another facility in the data.

6.2. Explaining Compliance Costs and Regulator Preferences. To understand the sources of the heterogeneity in the estimated marginal compliance costs and regulator preferences, we run regressions of the model primitive estimates on the facility attributes and provide the results in Table 6. We find that large marginal compliance costs are associated with major facilities and those located in a county with a high population density, a large agriculture industry presence, a high turnout for the 2010 gubernatorial elections, and a low support for the 2006 California proposition 84 to fund water quality projects.

We also find that the estimated heterogeneity in compliance costs is correlated with the heterogeneity in capital investment needs. To investigate this relationship, we employ the federal EPA’s Clean Watersheds Needs Survey, which reports the amount of the capital investment needed by wastewater treatment facilities to meet the water quality goals of the Clean Water Act. Based on the 2012 survey, we obtain information on the financial needs of 215 of the facilities used in the estimation, out of which 108 have nonzero needs. We find that our estimates of the marginal compliance costs for facilities with nonzero needs are, on average, 25 percent larger than those for the facilities with no needs.

We find evidence that the regulators’ preference parameter estimates presented in Table 5 are related to the environmental preferences of local constituents, measured as the percentage of voters supporting California Proposition 84 in 2006 at the county level. Figure 2 shows the correlation between this measure and the estimated values of γ and ψ for each facility. Panel (A) in the figure indicates a positive correlation between the regulator’s weight on violations in her objective function (γ) and the local preferences for water quality—both before and after the 2006 institutional changes. Panel (B) shows a negative correlation between the regulator’s weight on the penalty (ψ) and the local preferences. Table 6 shows that the aforementioned patterns persist even after we control for other facility attributes.

These results suggest that the regulator’s preferences reflect those of the population at the facility location. This may be driven by the state government’s political
Table 6. Explaining Compliance Costs and Regulators’ Preferences

<table>
<thead>
<tr>
<th>Compliance Cost</th>
<th>γ Before</th>
<th>γ After</th>
<th>ψ Before</th>
<th>ψ After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>2,046***</td>
<td>601**</td>
<td>1,043***</td>
<td>0.060***</td>
</tr>
<tr>
<td></td>
<td>(86.61)</td>
<td>(228)</td>
<td>(331)</td>
<td>(0.011)</td>
</tr>
<tr>
<td></td>
<td>[534]</td>
<td>[2,092]</td>
<td>[2,402]</td>
<td>[0.042]</td>
</tr>
<tr>
<td>Average household income (log, in $)</td>
<td>277</td>
<td>2,647**</td>
<td>8,101***</td>
<td>0.091**</td>
</tr>
<tr>
<td></td>
<td>(367)</td>
<td>(1,072)</td>
<td>(1,667)</td>
<td>(0.044)</td>
</tr>
<tr>
<td></td>
<td>[1,210]</td>
<td>[6,673]</td>
<td>[7,598]</td>
<td>[0.158]</td>
</tr>
<tr>
<td>Population density per sq. miles (log)</td>
<td>677***</td>
<td>-1,069***</td>
<td>-1,556***</td>
<td>0.016*</td>
</tr>
<tr>
<td></td>
<td>(69.15)</td>
<td>(188)</td>
<td>(324)</td>
<td>(0.009)</td>
</tr>
<tr>
<td></td>
<td>[342]</td>
<td>[2,242]</td>
<td>[2,464]</td>
<td>[0.021]</td>
</tr>
<tr>
<td>Irrigation water use (%)</td>
<td>2,173***</td>
<td>-3,989***</td>
<td>-4,030***</td>
<td>0.147***</td>
</tr>
<tr>
<td></td>
<td>(280)</td>
<td>(709.4)</td>
<td>(1,071)</td>
<td>(0.027)</td>
</tr>
<tr>
<td></td>
<td>[1,081]</td>
<td>[6,166]</td>
<td>[6,988]</td>
<td>[0.095]</td>
</tr>
<tr>
<td>Turnout (%)</td>
<td>28.49***</td>
<td>-12.96</td>
<td>-95.09</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(9.80)</td>
<td>(28.86)</td>
<td>(41.11)</td>
<td>(0.001)</td>
</tr>
<tr>
<td></td>
<td>[38.03]</td>
<td>[206]</td>
<td>[231.49]</td>
<td>[0.004]</td>
</tr>
<tr>
<td>Proposition for water projects (%)</td>
<td>-81.65***</td>
<td>124.9***</td>
<td>62.18</td>
<td>-0.003***</td>
</tr>
<tr>
<td></td>
<td>(9.69)</td>
<td>(26.78)</td>
<td>(39.52)</td>
<td>(0.001)</td>
</tr>
<tr>
<td></td>
<td>[37.88]</td>
<td>[279]</td>
<td>[317]</td>
<td>[0.004]</td>
</tr>
<tr>
<td>Regional water board fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>All other attributes used in estimation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>264</td>
<td>264</td>
<td>264</td>
<td>264</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.881</td>
<td>0.612</td>
<td>0.469</td>
<td>0.478</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.549</td>
</tr>
</tbody>
</table>

Notes: This table reports the OLS regression results of the estimated marginal compliance cost evaluated at a negligence level equal to one ($\text{Med}(\Theta)b(1)$) and the estimated regulator parameters (γ and ψ) on all facility attributes used in the estimation (see Table 3), using the facility-level estimates for each of the 264 facilities active in the first quarter of 2005. Robust standard errors under the assumption that the estimated parameters are measured without error are in parenthesis, and the bootstrap standard errors without such an assumption are in brackets. Asterisk marks are based on the former standard errors; *$p < 0.10$, **$p < 0.05$, ***$p < 0.01$.

Considerations that partially determine enforcement resource allocation and the regional board members’ ability and willingness to tailor the enforcement standards to local preferences and needs. Because regional board members are paid by hour at a relatively low rate while their job requires significant expertise, they are likely to serve the boards out of civic duty or personal political aspirations, which may help align their actions with the local constituents’ preferences.

6.3. Counterfactual Analyses.
Figure 2. Regulator versus Local Constituency Preferences

Notes: These figures show the correlation between the regulator parameter estimates for each facility (γ and ψ on panels (A) and (B), respectively) and the environmental preferences of local constituents, measured as the percentage of voters supporting California Proposition 84 in 2006 at the county level, both for the period prior to the 2006 institutional changes and for the period after the changes.

6.3.1. Why Disparities in Penalties? Our estimates of the model primitives indicate that the parameters characterizing the regulator preferences, γ and ψ, vary across facilities. We now assess the extent to which this heterogeneity in preferences explains the disparities in penalties documented in Section 3. With this intent, we consider a counterfactual scenario in which all facilities are subject to a regulator with the average values of γ and ψ across the 264 facilities active in the first quarter of 2005. We refer to this scenario as the homogeneous regulator preference (HRP) case. In our counterfactual analyses, we focus on the distribution of two outcomes across the facilities: (i) the expected violation frequencies; and (ii) e(1|x_{t,i}), the expected penalties schedule, evaluated at a negligence level equal to one. For each such outcome, we compute the mean and the standard deviation across the facilities.

In Table 7, the counterfactual outcomes under the homogeneous regulator preferences scenario before and after the 2006 changes are in Columns (3) and (4), respectively; Columns (1) and (2) present the baseline scenario outcomes. Relative to the baseline scenario, the dispersion in the expected penalties across the facilities falls to a relatively small extent in the scenario with the homogeneous preferences regulator. The standard deviation falls by 15 and 5 percent in the periods before and after the 2006 changes, respectively. Figure 3 provides further information on
Table 7. Effects of Enforcement Discretion

<table>
<thead>
<tr>
<th>Violation frequency</th>
<th>Baseline scenario</th>
<th>Homogeneous regulator preferences</th>
<th>Uniform penalty schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before (1)</td>
<td>After (2)</td>
<td>Before (3)</td>
</tr>
<tr>
<td>Mean</td>
<td>1.49</td>
<td>0.80</td>
<td>1.06</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.35</td>
<td>0.72</td>
<td>0.95</td>
</tr>
<tr>
<td>Expected penalty at $a = 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6,483</td>
<td>7,467</td>
<td>6,985</td>
</tr>
</tbody>
</table>

Notes: This table presents the results of two counterfactual scenarios that reduce the enforcers’ discretion. In the first one (Columns (3) and (4)), every facility is under a regulator with the average preferences across all facilities active in the first quarter of 2005. In this scenario, the regulator accounts for the compliance cost distribution of each facility, so different facilities can still face different penalty schedules. In the second counterfactual scenario (Columns (5) and (6)), each facility is subject to the same penalty schedule, devised by a regulator with the same preferences of the first scenario for a facility with average observed characteristics. The outcomes obtained from the fitted model are presented in Columns (1) and (2). The table reports the results both for the period prior to and after the 2006 institutional changes.

6.3.2. The Value of Expertise on Compliance Costs. Our empirical finding that the heterogeneity of compliance costs explain a large part of the heterogeneity in penalty disparities motivates us to consider a one-size-fits-all penalty schedule to all facilities. Suppose a regulator with preferences equal to the average across the facilities, as considered in the homogeneous regulator preference (HRP) scenario, designs an optimal penalty schedule for a facility with the average observable characteristics $x_{i,t}$, and apply this schedule to all facilities. We refer to such a scenario as the *uniform penalty schedule* (UPS) case. Figure 3 provides the resulting penalty schedule in this scenario along with those under the base and the HRP scenarios. Columns (5) and (6) of Table 7 present the mean and standard deviation across the facilities of the expected equilibrium violation frequencies under this scenario.
Comparing the HRP and the UPS cases provides a unique opportunity to assess how the flexibility to adjust the penalty schedule depending on compliance costs affects the facilities’ equilibrium compliance behavior, holding constant the regulator preferences. We consider this flexibility as an avenue for the regulator to exercise her expertise on the heterogeneous compliance costs of the different facilities. Table 7 shows that both the average and the standard deviation of violation frequencies increase under the UPS scenario, compared to the HRP case.

These results illustrate the importance of the regulators’ expertise in the design of the penalty schedule. Figure 3 shows that the point-wise average schedules in the UPS and HRP scenarios are very similar to each other. Thus, the uniform penalty schedule is harsher for some facilities than a flexible schedule under the HRP case, while, for other facilities, the uniform schedule is relatively lenient. As facilities with higher compliance costs are the ones that tend to face stricter penalties under a flexible enforcement schedule, switching to an uniform penalty schedule would lead to more violations overall. Similarly, the dispersion of the violation frequencies across the facilities would increase substantially in the UPS scenario.
We also find that compared to the baseline scenario, both the average and the standard deviation of violation frequencies would increase under the UPS case. This result is striking, since, as shown in Panel (B) of Figure 3, the average penalty schedules in these two scenarios are almost identical to each other, especially after the 2006 institutional changes. That is, the increase in the average violation frequencies does not follow from an overall decrease in the stringency of the penalty schedule under the UPS scenario. The comparison between the UPS and baseline scenarios corroborates our findings about the importance of regulator’s expertise. One downside of giving discretion to regulators is that it allows them to put forward their private interests, rather than the objectives of the social planner. Our analysis cannot identify whether the heterogeneity in the estimated regulator preferences reflects differences in private or social concerns. But, even under the assumption that the private concerns prevail—which would, in principle, favor an uniform policy—our counterfactual results indicate that preventing the regulator from setting stricter penalties for high-cost facilities would lead to more violations and increases the dispersion in compliance across the facilities.

6.3.3. Distributional Effects of Regulator Discretion. In the counterfactual experiments described above, we reduced regulatory discretion in two steps—first addressing the case in which regulator preferences are homogeneous, and then considering the scenario with a uniform penalty schedule. The effects of each of these steps on violation frequencies potentially differ across the facilities in our sample. For example, in the transition from the HRP to the UPS cases, some facilities face a more stringent enforcement schedule, while others benefit from a more lenient one. We now analyze what facility attributes mostly explain the changes in violation frequencies between the different regimes. Specifically, using our estimation and counterfactual results, we create dummy variables indicating whether each facility in the data increases its expected negligence level in the following regime comparisons: a transition from the baseline scenario to the HRP case; a transition from the HRP to the UPS scenarios; and a transition from the baseline to the UPS cases. We then separately regress each of these dummies on the facility attributes used in the estimation. Table 8 provides the results. For example, the dependent variable of Columns (1) and (4) takes value one if the facility increases its negligence level under the uniform penalty schedule scenario, relative to the baseline scenario.

We find that several facility attributes explain the heterogeneous effects of imposing a uniform penalty; in particular, major facilities and those located in high population
Table 8. Effects of Enforcement Discretion and Facility Attributes

<table>
<thead>
<tr>
<th>Dependent variable: An increase in the negligence level due to a policy change?</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UPS–B</td>
<td>UPS–HRP</td>
</tr>
<tr>
<td>Major</td>
<td>0.659***</td>
<td>0.206***</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.050)</td>
</tr>
<tr>
<td>Income</td>
<td>0.082</td>
<td>0.252</td>
</tr>
<tr>
<td></td>
<td>(0.127)</td>
<td>(0.227)</td>
</tr>
<tr>
<td>Population density</td>
<td>0.066***</td>
<td>0.130***</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>Irrigation water use</td>
<td>0.019</td>
<td>0.626***</td>
</tr>
<tr>
<td></td>
<td>(0.080)</td>
<td>(0.134)</td>
</tr>
<tr>
<td>Turnout</td>
<td>0.007*</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Water proposition</td>
<td>0.001</td>
<td>-0.022***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Regional board FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>All other attributes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>264</td>
<td>264</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.765</td>
<td>0.549</td>
</tr>
</tbody>
</table>

Notes: This table reports the OLS regression results where the dependent variable indicates if the facility would increase its negligence level (and hence increase the frequency of violations) under a scenario on the left compared to a scenario on the right. We consider three policies: the baseline current scenario (B), the scenario with homogeneous regulator preferences across all facilities (HRP), and the uniform penalty schedule scenario (UPS). The independent variables are identical to those of Table 6, and the unit of observation is each of the 264 facilities active in the first quarter of 2005. Robust standard errors under the assumption that the dependent variables are measured without error are in parenthesis; $^* p < 0.10$, $^{**} p < 0.05$, $^{***} p < 0.01$.

Density areas would increase violations. Notice that major facilities tend to have high compliance costs, as documented in Table 6. Therefore, compared to the HRP case, the uniform penalty schedule leads to an increase in violations for these facilities, as shown in Columns (2) and (5) of Table 8. Furthermore, the regulators tend to perceive the environmental costs of the violations by these facilities as being higher than those by minor ones (Table 6). Accordingly, applying average regulator preferences to these facilities would imply less stringent penalties and higher violation frequencies (Columns (3) and (6) in Table 8). That is, the effects of having a regulator with uniform preferences and preventing the regulator from using her expertise reinforce each other. On the other hand, we find that, although the regulators put less weight on violations by facilities located in relatively high population density areas (Table
6), the uniform penalty schedule is less stringent than the baseline for these facilities, as high population density also tends to be associated with high compliance costs.

7. Conclusion

We provide an empirical framework to evaluate regulatory discretion by identifying and estimating a model of strategic interactions between a regulator and privately-informed dischargers. Applying our framework to data on the regulation of wastewater treatment facilities in California, we estimate the environmental preferences and enforcement costs of regulators and the distribution of facilities’ compliance costs. We find that the disparities in penalties in the data are mostly explained by compliance cost heterogeneity across facilities; even if the regulator’s objective function were homogeneous across facilities, the existing penalty disparities would, to a large extent, remain.

Our study provides insights on the welfare implications of regulatory discretion. First, our results suggest that the regulator preferences reflect environmental preferences of local constituents. Second, mandating a one-size-fits-all policy that all facilities face the same penalty schedule, regardless of their compliance costs, would lead to an increase in both the level and the dispersion of violation frequencies. Third, the increase in violations would be prominent for large facilities and those located in densely populated areas. Taken together, these findings provide empirical support for regulatory discretion in our setting. Future research expanding our approach to estimate and incorporate the local residents’ marginal value of water quality may allow for a complete welfare evaluation of regulators’ performance.

References

Earnhart, Dietrich, “Regulatory Factors Shaping Environmental Performance at

Lim, Claire S.H. and Ali Yurukoglu, “Dynamic National Monopoly Regulation:

Appendix A. Proofs

Lemma 1. For every t, $G_t(\cdot)$ is identified.

Proof. Fix any time period t. The moment generating function of the number of violations K_t, $M_{K_t}(\cdot)$, is:

$$M_{K_t}(s) = \mathbb{E}[\exp(ks)] = \mathbb{E}_{A_t}[\mathbb{E}_K[\exp(ks)|a]]$$

$$= \mathbb{E}_{A_t}[\exp(a[\exp(s) - 1])] = M_{A_t}[\exp(s) - 1],$$

where the third equality follows from the moment generating function of the Poisson distribution with parameter a. Note that because A_t has a bounded support, $[0, a_t(\hat{\theta})]$, $M_{K_t}(s)$ exists for any $s \in \mathbb{R}$. Letting $u = \exp(s) - 1$ shows that $M_{A_t}(u) = M_{K_t}[\log(1 + u)],$ for $u \in (-1, \infty)$. Therefore, $M_{A_t}(\cdot)$ is identified on a neighborhood of 0, thereby identifying $G_t(\cdot)$. □

Lemma 2. Under Assumptions 1–3, we have that $T^H(a) = \hat{a} \left[\hat{\theta}(a, \text{post}), \text{pre} \right]$ for $a \in A_{\text{pre}} \cap A_{\text{post}}$, and $T^V \left[\hat{\theta}(a, \text{pre}), a \right] = \hat{\theta}(a, \text{post})$ for any $a \in A_{\text{pre}}$.

Proof. The first equation follows from $F(\cdot)$ and $b(\cdot)$ not changing over time and from the strict monotonicity $\hat{a}(\cdot, j)$ in its first argument. Concerning the second equation, from (3), we have that $\hat{\theta}(a, j)b'(a) = e'_j(a)$ for $j \in \{\text{pre, post}\}$, which implies that $\hat{\theta}(a, \text{post}) = \frac{e'_j(a)}{e'_{\text{pre}}(a)} \hat{\theta}(a, \text{pre})$. □

Proposition 2. Suppose Assumptions 1–3 hold. Then, for any $l \in \{0, 1, \ldots, \bar{L}\}$ and $j \in \{\text{pre, post}\}$, the following objects are identified up to the normalization $\theta_0 = 1$: (i) the equilibrium negligence level, $\hat{a}(\theta_l, j)$; (ii) the distribution of cost types, $F(\theta_l)$; and (iii) the marginal baseline compliance cost function, $b'(\hat{a}(\theta_l, j))$.

Proof. We first show by induction that $\theta_l = \hat{\theta}(a_l, \text{post}) = \hat{\theta}(a_{l+1}, \text{pre})$. From the normalization, $\theta_0 = \hat{\theta}(a_0, \text{post})$. For any l, let $\theta_l = \hat{\theta}(a_l, \text{post})$. Then, $a_{l+1} = T^H(a_l) = \hat{a} \left[\hat{\theta}(a_l, \text{post}), \text{pre} \right] = \hat{a}(\theta_l, \text{pre})$, where the first and second equalities are due to the definition of a_{l+1} and Lemma 2, respectively. Thus, $\theta_l = \hat{\theta}(a_{l+1}, \text{pre})$. Moreover, $\theta_{l+1} = T^V(\theta_l, a_{l+1}) = T^V \left[\hat{\theta}(a_{l+1}, \text{pre}), a_{l+1} \right]$, where the second equality is due to the
definition of \(\theta_{t+1} \). Therefore, from Lemma 2, we have that \(\theta_{t+1} = \bar{\theta}(a_{t+1}, \text{post}) \). We can then use (3) to write \(b'(a_t) = e_{\text{pre}}(a_t) = e_{\text{post}}(a_t) \). Moreover, \(F(\theta_t) \) is identified by

\[
F(\theta_t) = G_{\text{post}}(a_t) = G_{\text{pre}}(a_{t+1}.
\]

\[\square\]

Proposition 3. Suppose Assumptions 1–5 hold. Then, if \(\bar{L} \geq 1 \), the following objects are identified up to the normalization \(\bar{\theta}(a_0, \text{post}) = 1 \) for some \(a_0 \in A_{\text{post}} \): (i) the distribution of facilities’ types, \(F(\cdot) \); (ii) the derivative of the baseline compliance cost function, \(b'(a) \) for any \(a \in A_{\text{pre}} \cup A_{\text{post}} \); and (iii) the parameters of the regulator’s objective function, \(\{ \gamma_{j,r} \}_{r=1}^{R} \) and \(\psi_j \), for \(j \in \{\text{pre, post}\} \).

Proof. Let \(Q(\alpha) \) denote \(\alpha \)-quantile of \(F(\cdot) \). We can rewrite equation (9) as

\[
b' \left[G_j^{-1}(\alpha) \right] \left[(1 - \psi_j)Q(\alpha) + \frac{\psi_j(1 - \alpha)}{f(Q(\alpha))} \right] = \sum_{r=1}^{R} \gamma_{j,r} \left[G_j^{-1}(\alpha) \right]^{r-1}. \tag{14}
\]

We may also rewrite equation (3) as:

\[
e_j' \left[G_j^{-1}(\alpha) \right] Q(\alpha)b' \left[G_j^{-1}(\alpha) \right]. \tag{15}
\]

Using equation (15) and the relationship between the density and its quantile function, i.e., \(f(Q(\alpha)) = 1/Q'(\alpha) \), we rewrite equation (14) as

\[
e_j' \left[G_j^{-1}(\alpha) \right] Q(\alpha) \left[(1 - \psi_j)Q(\alpha) + Q'(\alpha)\psi_j(1 - \alpha) \right] = \sum_{r=1}^{R} \gamma_{j,r} \left[G_j^{-1}(\alpha) \right]^{r-1},
\]

which implies

\[
\frac{Q'(\alpha)}{Q(\alpha)} = \sum_{r=1}^{R} \gamma_{j,r} \left[G_j^{-1}(\alpha) \right]^{r-1} - e_j' \left[G_j^{-1}(\alpha) \right] \psi_j (1 - \alpha) \left(1 - \psi_j \right), \tag{16}
\]

for \(j \in \{\text{pre, post}\} \). Define \(\Gamma_{j,r} = \frac{\gamma_{j,r}}{\psi_j} \) and \(\Psi_j = \frac{1 - \psi_j}{\psi_j} \), and notice that there is a one-to-one relationship between \(\left(\{\Gamma_{j,r}\}_{r=1}^{R}, \Psi_j \right) \) and \(\left(\{\gamma_{j,r}\}_{r=1}^{R}, \psi_j \right) \). Integrating the above equation from some \(\alpha_0 \) to \(\alpha \) gives

\[
\log \frac{Q(\alpha)}{Q(\alpha_0)} = \int_{\alpha_0}^{\alpha} \left(\sum_{r=1}^{R} \Gamma_{j,r} \left[G_j^{-1}(u) \right]^{r-1} - \psi_j \right) \left(1 - \psi_j \right) du. \tag{17}
\]

Remember that \(F(\theta_t) = G_j[\bar{a}(\theta_t, j)] \). From Proposition 2, there is a vector \(\{\theta_t\}_{t=0}^{L} \) such that \(\bar{a}(\theta_t, j) \) is known for \(j \in \{\text{pre, post}\} \). Since equation (17) holds for arbitrary
\(\alpha \) and \(\alpha_0 \), the following holds for for any \(l \in \{1, \ldots, \tilde{L} \} \) and \(j \in \{\text{pre, post} \} \):

\[
\log \frac{\theta_1}{\theta_0} = \sum_{r=1}^{R} \Gamma_{j,r} \int_{G_j[\alpha_0]}^{G_j[\tilde{\alpha}(\theta_0,j)]} \frac{[G_j^{-1}(u)]^{-1}}{e_j[G_j^{-1}(u)](1-u)} du - \Psi_j \int_{G_j[\tilde{\alpha}(\theta_0,j)]}^{G_j[\alpha_0]} \frac{1}{(1-u)} du. \tag{18}
\]

Furthermore, we obtain the following equations for any \(\alpha \) by observing that equation (16) holds for both regimes:

\[
\sum_{r=1}^{R} \Gamma_{\text{post},r} \frac{G_{\text{post}}(\alpha)}{e_{\text{post}}[G_{\text{post}}(\alpha)]} - \sum_{r=1}^{R} \Gamma_{\text{pre},r} \frac{G_{\text{pre}}(\alpha)}{e_{\text{pre}}[G_{\text{pre}}(\alpha)]} + \Psi_{\text{pre}} - \Psi_{\text{post}} = 0. \tag{19}
\]

Note that, for each regime, equation (18) specifies a system of \(\tilde{L} \) linear equations and \(R + 1 \) unknowns \(\{\Gamma_{j,r} \}_{r=1}^{R} \), and equation (19) specifies an infinite number of equations. Assumption 5 suffices for a system consisting of equations (18) and (19) to have an unique solution for \(\{\gamma_{\text{pre},r} \}_{r=1}^{R}, \{\gamma_{\text{post},r} \}_{r=1}^{R}, \psi_{\text{pre}}, \psi_{\text{post}} \) \(a_0 = G_j(a_0) \) in equation (17), we identify \(Q(\cdot) \) and, accordingly, \(F(\cdot) \) and \(f(\cdot) \). Lastly, using equation (14), we identify \(b'(a) \) for \(a \in \mathcal{A}_{\text{pre}} \cup \mathcal{A}_{\text{post}} \).

Note that our model is over-identified because we can evaluate (19) at an arbitrarily large number of quantiles. Moreover, for each regime, there is at least one more equation that we could use for the identification of the model primitives evaluating equation (9) at the upper bounds of \(\mathcal{A}_j \)'s.

\[\square \]

Appendix B. Estimation Procedure

Step 1. We parametrically estimate the expected penalties as specified in (12) by a constrained OLS. Given the estimates, we estimate the marginal expected penalty, \(\bar{\hat{e}}_j(a|x) \) using equation (1) for \(j = \{\text{pre, post} \} \). To estimate \(G_j(\cdot|x) \), we use the parametric specification of (13) and estimate \(\delta \) and \(\beta_j \)'s by MLE.

Step 2. We denote by \(\hat{\theta}(a,j|x) \) an estimator of the facility type that sets negligence level \(a \) under regime \(j \), given \(x \). We normalize \(\hat{\theta}(1,\text{post}) = 1 \), and employ the empirical counterparts of the transforms \(T^H \) and \(T^V \), defined in (10) and (11), to obtain \(\hat{\theta}(a,j|x) \) for a sequence of values of \(a \). Normalizing \(\hat{\theta}_0(x) = 1 \) and \(\hat{\theta}(1,x) = 1 \), we define recursively:

\[
\hat{\theta}_l(x) \equiv \frac{\hat{\bar{e}}_{\text{pre}}^{-1}[\bar{G}_{\text{post}}[\hat{\theta}_{l-1}(x)|x]|x]}{\bar{e}_{\text{pre}}[\bar{G}_{\text{post}}[\hat{\theta}_{l-1}(x)|x]|x]},
\]

and

\[
\hat{\theta}_l(x) \equiv \frac{\hat{\bar{e}}_{\text{post}}[\hat{\theta}_{l}(x)|x]|x]}{\hat{\bar{e}}_{\text{pre}}[\hat{\theta}_{l}(x)|x]} \hat{\theta}_{l-1}(x).
\]
Let us define \(\hat{\theta}_l^{\text{post}}(x) \equiv \hat{\theta}_l(x) \), \(\hat{\theta}_l^{\text{pre}}(x) \equiv \hat{\theta}_{l-1}(x) \), \(\hat{\delta}_l^{\text{post}}(x) \equiv \hat{\delta}_l(x) \) and \(\hat{\delta}_l^{\text{pre}}(x) \equiv \hat{\delta}_l(x) \), for every \(l \). We employ \(\hat{\theta}_l(x) \) as an estimator of \(\hat{\theta}(\hat{\delta}_l(x), j|x) \), for \(j \in \{\text{pre}, \text{post}\} \) and any \(l \).

Step 3. Equation (18) implies that

\[
\sum_l \left\{ \log \frac{\theta_l}{\theta_0} - \sum_{r=1}^R \Gamma_{j,r} \int_{\alpha_l}^{\alpha_l} \frac{[G_j^{-1}(u)]^{r-1}}{e_j [G_j^{-1}(u)] (1-u)} du + \Psi_j \int_{\alpha_l}^{\alpha_l} \frac{1}{1-u} du \right\}^2 = 0,
\]

for \(j \in \{\text{pre}, \text{post}\} \). Also, from (19), we have

\[
\sum_{\alpha \in U} \left\{ \sum_{r=1}^R \Gamma_{\text{post},r} \frac{[G_{\text{post}}^{-1}(\alpha)]^{r-1}}{e_{\text{post}} [G_{\text{post}}^{-1}(\alpha)]} + \Psi_{\text{pre}} - \sum_{r=1}^R \Gamma_{\text{pre},r} \frac{[G_{\text{pre}}^{-1}(\alpha)]^{r-1}}{e_{\text{pre}} [G_{\text{pre}}^{-1}(\alpha)]} - \Psi_{\text{post}} \right\}^2 = 0,
\]

where \(U = \{\alpha_1, \ldots, \alpha_{N_U}\} \) is a grid in the \((0,1)\) interval such that \(G_{\text{pre}}^{-1}(\alpha) > 0 \) for all \(\alpha \in U \). We estimate \(\{\Gamma_{\text{pre},r}(x)\}_{r=1}^R \), \(\Psi_{\text{pre}}(x) \), \(\{\Gamma_{\text{post},r}(x)\}_{r=1}^R \) and \(\Psi_{\text{post}}(x) \) using a sample analogue of the above two equations for any given \(x \). We then estimate \(\{\gamma_{j,r}(x)\}_{r=1}^R \) and \(\psi_j(x) \) as

\[
\hat{\gamma}_{j}(x) \equiv \frac{1}{1 - \hat{\psi}_j(x)} \quad \text{and} \quad \hat{\gamma}_{j,r}(x) \equiv \hat{\Gamma}_{j,r}(x) \hat{\psi}_j(x),
\]

for \(j \in \{\text{pre}, \text{post}\} \) and \(r = \{1, \ldots, R\} \).

Step 4. From the empirical analogue to (17) with \(\alpha_0 = 0 \), we estimate the quantile function associated with the distribution of types, conditional on \(x \), as

\[
\hat{Q}_j(\alpha|x) \equiv \hat{\theta}_0^j(x) \exp \left(\int_{\hat{\theta}_0^j(x)}^{\alpha} \sum_{r=1}^R \Gamma_{j,r}(x) \frac{[\hat{G}_j^{-1}(u|x)]^{r-1}}{e_j \hat{G}_j^{-1}(u|x)} - \Psi_j(x) \right) \frac{1}{1-u} du,
\]

for \(j \in \{\text{pre}, \text{post}\} \). Given our restriction that \(Q_{\text{pre}}(\cdot) = Q_{\text{post}}(\cdot) \), an estimator of the quantile function of \(F(\cdot|x) \), which we denote by \(\hat{Q}(\cdot|x) \), is:

\[
\hat{Q}(\alpha|x) = \hat{\pi}_{\text{pre}}(x) \hat{Q}_{\text{pre}}(\alpha|x) + [1 - \hat{\pi}_{\text{pre}}(x)] \hat{Q}_{\text{post}}(\alpha|x),
\]

where the scalar \(\hat{\pi}_{\text{pre}}(x) \) is a weight that depends on the relative frequency of observations from the pre-2006 regime, conditional on the observable characteristics \(x \). An estimator for \(F(\cdot|x) \), or \(\hat{F}(\cdot|x) \), is the inverse of \(\hat{Q}(\cdot|x) \). Note that under Assumption 2, the inverse of \(\hat{Q}(\cdot|x) \) is guaranteed to exist. Finally, we define

\[
\hat{B}'(a|x) \equiv \{\hat{\pi}_{\text{pre}}(x) \hat{e}_{\text{post}}'(a|x) + [1 - \hat{\pi}_{\text{pre}}(x)] \hat{e}_{\text{pre}}'(a|x)\} / \hat{Q}[\hat{F}(a|x)|x].
\]
Appendix C. Sensitivity Analyses

To assess the sensitivity of our findings to some of the assumptions made in our empirical analysis, we present results based on alternative assumptions in Table 9. First, we estimate the penalty schedule by considering all penalties within three years of the occurrence of each violation, as opposed to the four years used in the original results. This change allows us to use a longer period of data for the penalty schedule estimation in the first step. Specifically, we employ the penalties for the violations of 2000–2002 (2009-2011) to estimate the penalty schedule before (after) the 2006 institutional changes, instead of 2000–2001 (2009–2010), as in the original results.

Second, we incorporate the idea that some MMP violations are more severe or significant than others. With this intent, we use the water boards’ ranking of violations into priority and the rest. The water quality enforcement policy (California State Water Resources Control Board, 2010b) defines priority violations as those “that pose an immediate and substantial threat to water quality and that have the potential to cause significant detrimental impacts to human health or the environment,” and states that the water boards should rank violations and then prioritize cases for formal discretionary enforcement action. In our original estimation, we treat all MMP violations as identical to each other. In our sensitivity analysis, instead, we assume that one MMP violation ranked as a priority violation is equal to two non-priority MMP violations. This way, even if the number of MMP violations is the same for two facilities, if one facility has more priority violations than the other, the former is more likely to be associated with a larger negligence level than the latter.

Third, we change the unit of observation from a facility-quarter to a facility-semester. For a given period, a facility draws its cost type and determines the level of negligence; and a regulator sets a penalty schedule over the violations during the period. A quarter reflects the distinct precipitation patterns across four seasons in California. A semester, however, may also be a suitable period to consider, because, among all 1,605 penalty actions imposed on domestic wastewater treatment facilities in 2000-2014, the median period of violations comprised by an unique penalty action (either an ACL or a settlement in court) is 7 months.

Table 9 shows that the estimates of the model primitives obtained from each of the three alternative specifications are similar to our original estimates. Specifically, the marginal compliance cost estimates are very similar to the original ones, and our finding that regulators’ environmental costs are higher for violations by major facilities
than for those by minor ones persists. Moreover, the main results of our counterfactual analysis in Section 6.3 are robust to these three alternative specifications.
Table 9. Sensitivity Analyses

<table>
<thead>
<tr>
<th>Estimated Model Primitives</th>
<th>Marginal Compliance Cost (Med((\Theta))(b'(1)))</th>
<th>Environmental Cost per Violation ((\gamma)) Before</th>
<th>After</th>
<th>Enforcement Cost per Penalty ((\psi)) Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original specification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2,041</td>
<td>2,390</td>
<td>5,956</td>
<td>1.11</td>
<td>1.08</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1,729</td>
<td>2,631</td>
<td>3,360</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>Alternative specification 1: Penalty within 3 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1,808</td>
<td>2,232</td>
<td>5,616</td>
<td>1.11</td>
<td>1.08</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1,473</td>
<td>4,934</td>
<td>5,753</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>Alternative specification 2: Distinguishing priority vs non-priority violations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2,182</td>
<td>1,583</td>
<td>5,023</td>
<td>1.12</td>
<td>1.08</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1,728</td>
<td>1,631</td>
<td>2,274</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Alternative specification 3: Semester-long period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2,726</td>
<td>8,641</td>
<td>13,491</td>
<td>1.18</td>
<td>1.11</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>2,476</td>
<td>19,774</td>
<td>21,228</td>
<td>0.15</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Counterfactual Scenarios</th>
<th>Baseline scenario</th>
<th>Homogeneous regulator preferences</th>
<th>Uniform penalty schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before After</td>
<td>Before After</td>
<td>Before After</td>
<td>Before After</td>
</tr>
<tr>
<td>Original specification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violation frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.49</td>
<td>0.80</td>
<td>1.06</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.35</td>
<td>0.72</td>
<td>0.95</td>
</tr>
<tr>
<td>Expected penalty at (a = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6,483</td>
<td>7,467</td>
<td>6,985</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>3,437</td>
<td>3,859</td>
<td>3,285</td>
</tr>
<tr>
<td>Alternative specification 1: Penalty within 3 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violation frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.48</td>
<td>0.79</td>
<td>0.99</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.35</td>
<td>0.72</td>
<td>0.85</td>
</tr>
<tr>
<td>Expected penalty at (a = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>5,990</td>
<td>6,942</td>
<td>6,609</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>3,256</td>
<td>3,727</td>
<td>2,829</td>
</tr>
<tr>
<td>Alternative specification 2: Distinguishing priority vs non-priority violations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violation frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.21</td>
<td>0.88</td>
<td>1.70</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>2.09</td>
<td>0.84</td>
<td>1.72</td>
</tr>
<tr>
<td>Expected penalty at (a = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6,105</td>
<td>7,055</td>
<td>6,189</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>3,321</td>
<td>3,692</td>
<td>3,119</td>
</tr>
<tr>
<td>Alternative specification 3: Semester-long period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violation frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.3</td>
<td>1.21</td>
<td>0.82</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.31</td>
<td>0.69</td>
<td>0.62</td>
</tr>
<tr>
<td>Expected penalty at (a = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>8,074</td>
<td>9,735</td>
<td>12,593</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>4,452</td>
<td>5,062</td>
<td>6,367</td>
</tr>
</tbody>
</table>