Competition and Incentives in Mortgage Markets:
The Role of Brokers*

Claudia Robles-Garcia¶
London School of Economics

JOB MARKET PAPER
First Draft: September 27, 2018
This Draft: January 7, 2019
(Latest Version HERE)

Abstract
Mortgage brokers acting as expert advisors for households often receive commission payments from lenders. This paper empirically analyzes the effects on welfare and market structure of regulations restricting this form of broker compensation. Loan-level data from the universe of UK mortgage originations suggests that (1) brokers increase upstream competition by facilitating the entry of new, lower-cost lenders, and (2) commission rates distort brokers’ advice and generate an agency problem with households. To study the net effect of these forces in equilibrium, I estimate a structural model that features households’ demand for both mortgage products and broker services, lenders’ optimal pricing decisions, and broker-lender bilateral bargaining over commission rates. I use the estimates to evaluate the impact of policies restricting brokers’ commission payments. A ban on commissions leads to a 25% decrease in consumer welfare, whereas a cap equal to the median commission increases consumer surplus by 10%. I find that introducing more restrictive caps decreases broker market power at the expense of increasing lender market power.

JEL Codes: G21, G28, L14, M52, D12. Keywords: Expert advisors; intermediaries; mortgages; brokers; bargaining; vertical markets.

*I am deeply grateful to my supervisor Alessandro Gavazza for his patient guidance, constant encouragement and invaluable advice; and to Daniel Paravisini for his excellent comments and continuous support. I also thank Matteo Benetton, Patrick Coen, Matthew Gentry, Nicola Limodio, Gerard Llobet, William Matcham, Clement Minaudier, Nicola Pavanini, Martin Pesendorfer, Andrea Pozzi, Wolfgang Riding, Marta Santamaria, Mark Schankerman, Pasquale Schiraldi, Enrique Schroth, Amit Seru, John Sutton, and Margarita Tsoutsou for all their help and suggestions. I would also like to thank seminar participants at the London School of Economics, Financial Conduct Authority, CEPR Household Finance European Workshop and Oxford Said Job Market Workshop. The paper uses data from the Financial Conduct Authority that has been provided under a data-access agreement for external research purposes. The views expressed are exclusively those of the author and do not necessarily reflect the views of the Financial Conduct Authority. I acknowledge the economic support of the Economic and Social Research Council and CaixaBank Foundation. All errors are my own.

1 Introduction

In many financial markets, expert advisors often receive commission payments from upstream firms. In theory, this form of compensation can generate an agency problem between experts and households by distorting advice towards higher-commission, more expensive products. Motivated by consumer detriment due to biased advice, regulators worldwide have recently restricted financial relationships between upstream firms and expert advisors.\(^1\) Although these policies might help align experts’ incentives with those of consumers, they will also have supply-side equilibrium effects on competition and efficiency in the market. The empirical evidence on these equilibrium effects is, however, very limited. This paper contributes to this debate by modeling and quantifying the effects on welfare and market structure of regulations restricting payments between lenders and brokers in mortgage markets. Understanding the financial relationships between lenders and mortgage brokers is important both because of the central role mortgage markets have in the consumer credit landscape (where brokerage is often households’ most preferred option) and because of the economic and policy implications of similar restrictions in other markets (e.g., insurance, retail investment, and real estate).

Using a novel loan-level dataset for all mortgage originations in the UK, I show motivating evidence on the role of brokers in this market and the key trade-offs consumers may face. When choosing a mortgage, more than 50% of households rely on mortgage brokers to help them decide which alternative best fits their needs and to assist them with the application process.\(^2\) To compensate brokers for their services, consumers often pay a fee. However, these downstream charges are not the only source of revenue for brokers. They also receive a commission payment from lenders whenever they originate one of their mortgages. I find reduced-form evidence suggesting that broker sales react to changes in lenders’ financial incentives. After controlling for a rich set of fixed effects, I find that products with a 13% (£100) higher commission for a broker have, on average, a 2% higher share in the broker’s sales portfolio. Despite demand-side incentives that might discipline brokers to act in the best interest of households (e.g., repeated sales and reputation concerns), brokers seem responsive to supply-side monetary incentives.

The data also shows that brokers allow small, challenger banks to introduce their products

\(^1\)Examples of these initiatives include the Retail Distribution Review in the UK, which resulted in a ban on all upstream commissions for retail investment advice. The Netherlands and Australia have also introduced comparable bans on commission payments for complex financial products, and other countries such as Canada are currently considering the possibility of taking similar measures. In the US, the Consumer Financial Protection Bureau recently introduced new loan originator compensation requirements under the Truth in Lending Act. These new requirements restrict mortgage brokers’ upstream payments.

\(^2\)Mortgage brokers originate over 44% (pre-crisis) of residential mortgages in the US (National Association of Mortgage Brokers, http://www.namb.org/; and about 33% after the crisis, Alexandrov & Koulayev 2018), 50% in the UK (Financial Conduct Authority, https://www.fca.org.uk/), 53% in Australia (Mortgage and Finance Association of Australia’s (MFAA), and according to the Canadian Mortgage and Housing Corporation (CMHC) 55% of first-time buyers in Canada.
at a lower cost, for example, less need for advertisement and an extensive branch network. In exchange, challenger banks pay, on average, higher commissions to brokers. They also offer the cheapest deals for many products in the market. After accounting for observable characteristics, households originating their mortgage through a broker are 7 percentage points more likely to choose a product from these new lenders. In an industry that is very concentrated upstream, brokers seem to improve competition by making households aware of better products that would otherwise not be discovered given challenger banks’ limited advertisement and lack of extensive branch networks.

I also find that, despite the rise of price comparison websites and online sales, nearby bank branches still matter for household choices. The number of branches in a given county is strongly correlated with lenders’ share of non-intermediated sales, suggesting borrowers using lenders’ in-house distribution channels value proximity of the nearest branch. Moreover, in counties where lenders have a low branch density, they tend to pay higher commissions to brokers in order to increase their market share via intermediated sales. Brokers offer lenders a way to introduce their products in areas where setting up a branch is costly and consumer take-up of online distribution channels remains low. However, in areas where lenders already have a high branch density, brokers can steal business from lenders’ in-house distribution channels. These results suggest brokers and bank branches are substitutes. Because households can bypass the intermediary and go directly to lenders, the relationship between brokers and lenders in this market is both vertical (brokers provide an alternative distribution channel for lenders) and horizontal (brokers compete downstream with lenders’ in-house distribution channels).

With this empirical evidence in mind, I develop a structural model of the UK mortgage market that I later estimate and use to quantify the net effect of restricting commission payments on welfare. The model features (1) utility-maximizing households in need of a mortgage for the purchase of a residential property, (2) heterogeneous multi-product lenders selling differentiated mortgage products and competing on interest rates, and (3) broker firms providing advice to households on available products and processing all application and origination paperwork. On the supply side, I endogenize commission payments in this market by modeling negotiations between a broker and a lender as a Nash bargaining game. Each pair bargains over the lender’s inclusion in the broker’s network. In the event of an agreement, the pair sets a per-sale commission, and the broker can originate the lender’s mortgages. Once all negotiations end, each lender chooses interest rates to maximize its expected profits. On the demand side, I model households’ choice of distribution channel as a discrete choice between hiring a broker or going directly to lenders’ in-house distribution channels (e.g., branches). This decision depends on the households’ search costs and their expected payoffs from each channel. After choosing a distribution channel, the household needs to decide on a mortgage product. I model this part of demand as a discrete logit with
households’ preferences being a function of interest rates, product characteristics, and latent demand. Broker preferences over commissions and other product characteristics will also matter for those households that selected the intermediated channel.

Demand estimates show the following: (1) Brokers have downstream market power and can extract surplus from consumers, confirming the existence of an agency problem between households and brokers; (2) average household search costs account for almost 20% of consumer surplus, implying the average household finds it very costly to originate a mortgage on its own; and (3) households going directly to lenders have a preference for nearby branches. This taste for branch proximity disappears for households hiring a broker.

Consumers originating their mortgages via the direct channel face stronger lender market power (at the local level) than those choosing the intermediated channel. Thus, changes in competition across lenders have a differential impact on households, depending on their choice of sales channel.

On the supply side, I find that lenders’ marginal costs are on average greater for higher loan-to-value bands and products with longer initial fixed periods. Additionally, estimates show that lenders’ marginal costs differ depending on the sales channel, with broker sales being less costly than direct sales. Thus, brokers improve efficiency in the market by reducing costs both for lenders (via lower marginal costs) and households (via lower search costs). Finally, the estimated bargaining parameters reject take-it-or-leave-it offers as a model for setting commission payments in this market.

Next, I use these estimates to simulate welfare effects of policies restricting brokerage services and commissions. A counterfactual simulation with no brokers results in a drop of 51% in consumer surplus. This decrease is driven by a 156% increase in search costs for households, a 13% increase in lenders’ marginal costs, and a 35% increase in the Herfindahl-Hirschman Index (HHI). The decrease in competition results from consumers going direct having a preference for nearby branches and only the largest lenders having a dense branch network. Overall, the combination of these three equilibrium effects results in 24% higher prices and consumers being worse off than in the baseline with broker services.

Next, I consider counterfactual scenarios with a complete ban on commissions (motivated by recent regulations) and three different caps. Two countervailing forces largely determine my results: broker and lender market power. Households choosing the intermediated channel face broker market power, resulting from brokers’ capacity to extract surplus from the household. Households originating their mortgage directly with lenders experience local lender market power, driven mainly by the presence of nearby branches. When compared with the baseline with no restrictions on commissions, a ban reduces broker market power at the expense of increasing lender market power. In this situation, the price of expert services increases for households, causing 115% more households to choose lenders’ in-house distribution channels and increasing search costs by 83%. Due to the lack of extensive branch
networks, the share of challenger banks goes down by 16% with the HHI increasing by 21%. Lenders’ average marginal cost goes up by 7%, causing prices to rise by 11%. The net effect of these forces is a 25% decrease in consumer surplus.

Alternatively, I find that a cap equal to the median commission payment in the baseline case with no restrictions generates a 10% increase in consumer surplus. In this scenario, the decrease in broker market power is sufficiently large to compensate for the increase in lender market power. The intuition is that a cap still allows brokers to get revenue from lenders, causing household broker fees to increase but not as much as in the case of a ban. Therefore, although the share of direct sales increases by 30%, the competition effect of challenger banks dominates and prices fall by 5%. Overall, these findings are evidence in favor of capping, rather than banning, commission payments in markets where consumers can access the good not only through intermediaries, but also directly from upstream firms. The trade-offs for competition and efficiency need to be considered when implementing similar policies in other markets where consumers face high search costs and brokers and lenders have market power.

Contributions to the Literature. This paper contributes mainly to three strands of literature. First, it complements existing approaches in household finance (Campbell & Cocco 2003; Campbell 2012; Best et al. 2018; DeFusco & Paciorek 2017) by analyzing the role that brokers play in borrowers’ demand in mortgage markets (often dominated by intermediated sales). Woodward & Hall (2010, 2012) consider broker fees when analyzing originations in the US mortgage market. They find evidence of significant price dispersion in broker fees and show that groups that are likely less informed pay higher brokerage fees. Jiang et al. (2014) also study the role of mortgage brokers on mortgage delinquency between 2004 and 2008. They find that brokers originated lower-quality loans, which were 50% more likely to be delinquent than bank-originated loans. These papers focus on the interactions between brokers and borrowers, and how brokers’ financial incentives can generate biased advice and be detrimental for consumers. I contribute by explicitly accounting for supply-driven equilibrium effects that may increase consumer surplus via more upstream competition, lower search costs, and lower prices. This paper is also the first to develop a structural model to quantify welfare effects from regulations imposing restrictions on brokers’ financial incentives. In that sense, my work adds to the recent trend of using structural techniques to analyze markets with financial products, such as pensions (Hastings et al. 2017), insurance (Koijen & Yogo 2016), retail deposits (Egan et al. 2017), corporate lending (Crawford, Pavanini & Schivardi 2018), credit cards (Nelson 2017), and mortgages (Benetton 2018).

Second, this paper fits into a vast literature on the role of intermediaries. Intermediaries can create value by guaranteeing quality and certifying information (Biglaiser et al. 2017, Biglaiser & Li 2018), which can alleviate information asymmetries in many markets, such
as labor markets (David 2008, Stanton & Thomas 2015) and insurance markets (Anagol et al. 2017). Intermediaries can also lessen trading frictions (Gavazza 2016), reduce search costs (Salz 2017), promote innovation and adoption of new technologies (Howells 2006), and facilitate entry (Ahn et al. 2011). This paper is closest to settings in which intermediaries take the form of expert advisors and adds to the growing empirical literature that examines agency problems in expert services. For example, in the prescription drug market, Iizuka (2007, 2012) and Ho & Pakes (2014) find doctors react to financial incentives when dispensing generic drugs. Financial advisors are also not immune to conflicts of interest, with many of them having misconduct records and being repeat offenders (Egan et al. 2018). In the housing market, Levitt & Syverson (2008) show how real estate agents exploit their informational advantage to their financial benefit when advising clients on the timing and sales price of their houses. Similarly, Guiso et al. (2018) find evidence of distorted advice when analyzing lenders’ in-house mortgage recommendations to borrowers. Financial incentives can also amplify the effects of high search costs by inducing brokers to steer consumers towards inferior products (Egan 2018).

Though closely related, this paper differs from prior work on expert advisors in that it estimates welfare effects from a policy restricting supply-side financial incentives. A recent theoretical literature that, similar in spirit to this paper, analyzes market effects in the presence of commission payments to financial advisors (e.g., Inderst & Ottaviani 2009, 2012a,b,c; Inderst 2015; Heidhues et al. 2016; Martimort et al. 2017). However, given the possible trade-offs in the market, the overall effect on consumers of banning such commissions is theoretically ambiguous. The empirical literature on the topic is almost inexistent. Grennan et al. (2018) study payments between pharmaceutical firms and physicians. They use a structural model to estimate the equilibrium response of prices and quantities to a ban on these financial incentives and find a positive effect on consumer welfare of such policy. This paper differs from their approach in that it analyzes intermediation services in financial markets, which face different trade-offs than those in the healthcare sector. For example, in many financial markets, consumers can directly access providers without the need to consult with an expert advisor, which is often not the case for medical treatments. Therefore, in market structures where consumers can bypass the intermediary, the exposure of households to market power from providers and intermediaries differs from settings similar to that in Grennan et al. (2018). These differences lead to contrasting welfare effects of policies restricting upstream payments.

Finally, my analysis relates to the recent empirical literature on bargaining. Many of the existing papers focus on the healthcare sector and the interactions between hospitals, insurance companies, suppliers, and firms (see, e.g., Grennan 2013, Gowrisankaran et al. 2015, Ho 2009, Ho & Lee 2017a, Ho & Lee 2017b, Grennan & Swanson 2016), and on the telecommunications industry and the relationships between television channels, programming
distributors, and viewers (see, e.g., Crawford & Yurukoglu 2012, Crawford, Lee, Whinston & Yurukoglu 2018). This paper is the first to introduce bargaining to analyze vertical payments in credit markets. Moreover, this work also contributes to the literature by modeling a bargaining game in markets where consumers have the option to bypass the intermediary and directly purchase the good from providers via their in-house distribution channels. This type of vertical structure is also analyzed in Donna et al. (2018) for the Portuguese outdoor advertising industry. Similarly to their setting, in my framework when providers and intermediaries negotiate, they acknowledge that their relationship is both vertical (intermediaries provide an alternative distribution channel for providers) and horizontal (intermediaries compete with providers’ in-house distribution channels). I exploit this vertical-horizontal structure in a novel identification strategy using geographical and time variation in lenders’ branch networks and their outside options to access consumers.

The rest of the paper proceeds as follows. Section 2 describes the data and some stylized facts about the UK mortgage market. Section 3 shows motivating empirical evidence on potential trade-offs and conflicts of interests in the data, which I later capture in the model. In Section 4, I develop a general equilibrium model for the mortgage market. In Section 5, I discuss estimation and identification of the demand and supply. Section 6 presents the estimation results. Section 7 performs counterfactual and welfare analysis of restricting upstream payments. Section 8 concludes.

2 Institutional Setting and Data

2.1 The UK Mortgage Market

The UK mortgage market has several institutional features that differentiate it from mortgage markets in the US, Canada, and Continental Europe. For example, the UK has no long-term fixed-rate mortgages. Most products feature a relatively low (usually fixed) interest rate for an initial period of usually two, three, or five years followed by a (usually floating) reset rate that is significantly higher. Reset rates last until the end of the mortgage term, unless borrowers decide to refinance. Additionally, most mortgage contracts include early repayment charges, which typically account for 5% or 10% of the outstanding loan and are in place until the end of the initial fixed period. Given the significant size of these charges and the jump in the reset rate, most borrowers refinance around the time when the initial duration ends, making remortgaging a relatively frequent event in this market (see, e.g., Cloyne et al. 2017).

Another important aspect of the UK mortgage market is individual-based pricing or negotiation between the lender and the borrower is limited. All borrowers purchasing the same mortgage product pay close to the advertised rate. Lenders’ pricing of default risk in this market seems to be driven by loan-to-value ratios (see, e.g., Best et al. 2018), whereas
the pricing of refinancing risk is embedded in the duration of the initial fixed period (see, e.g., Benetton 2018). Therefore, products with the same maximum loan-to-value and initial fixed period should have very similar interest rates for a given lender. I test this assertion by regressing loan-level interest rates on an extensive set of dummy variables. Figure A.1 reports the adjusted R-squared that results from such regressions. I consider a product to be a triplet of the maximum loan-to-value, initial period, and lender, and I find that product-month fixed effects and the corresponding lender fees account for more than 90% of the variation in mortgage rates. The adjusted R-squared does not increase once I control for borrower characteristics (age, income, credit score, employment status) and location of the property. Moreover, the residual variation cannot be explained after including a dummy for the mortgage being originated through a broker.

In terms of market structure, the UK mortgage market is very concentrated upstream. The six largest lenders in the market account for more than 75% of mortgage originations. Panel A in Figure A.2 shows the consolidation process that these lenders, the so-called “Big Six,” have experienced over the last decades. Through a series of mergers and acquisitions, they have been able to achieve significant market power at a national level. However, the last several years have also seen significant entry in the market from the so-called “Challenger Banks.” Panel B in Figure A.2 presents the timeline for the main entrants in the mortgage market. Many of these entrants have a very limited branch network and promote their products mostly through on-line distribution channels and intermediaries. This strategy has proven successful partly because of the strong presence of mortgage brokers in the UK market. In 2017, more than 70% of first-time-buyers and 60% of home-movers originated their mortgage through an intermediary. Brokers also have a significant market share in the remortgaging market, especially for those borrowers who refinance with a different lender. Although many individual brokers are present in the form of one-person firms, the broker market is dominated by the largest 20 broker companies. These brokerage firms account for more than 60% of all new originations and have direct communication with lenders. I will discuss the relationship between lenders and broker companies in more detail when describing the data in the next subsection.

2.2 Data

My main dataset is the Product Sales Database (hereafter, PSD), which is a comprehensive regulatory dataset containing the universe of residential mortgage originations in the UK. These data are collected quarterly by the Financial Conduct Authority (FCA) and are only available to restricted members of staff and associated researchers at the FCA and the Bank of England. For the purposes of this paper, I focus on the year 2015 and the first half of 2016. During this period, I observe for each mortgage origination details on the loan (interest
rate, loan amount, initial fixed period, lender, fees), the borrower (income, age, credit score), and the property (value, location). I also have information on the distribution channel, that is, whether a broker intermediates the sale and, if so, the identity of the brokerage. Table 1 summarizes the data. I observe more than 2 million contracts of which almost 90% are mortgages with initial fixed periods of two, three, and five years. Given the importance of refinancing in this market, the finding that more than 50% of borrowers in my sample are either external or internal remortgagors is not surprising. The average interest rate is 2.57 percentage points, and lenders charge on average an origination fee of £467. The average loan is almost £160,000 with a loan-to-value of 60%, a loan-to-income of 3.1, and an average maturity of 25 years. Borrowers are, on average, 38 years old, have an annual income of £62,000. Borrowers are richer and have higher credit scores than the average UK resident.

I complement the PSD data with novel information on broker companies that is also collected by the FCA. For each mortgage origination in the PSD, I observe commission payments (made by lenders to brokers for a given sale), broker fees (paid by borrowers), and supplementary details on contract agreements between lenders and brokers. Table 2 summarizes the data. Panel A compares the fraction of intermediated sales and the average per-sale broker remuneration across borrower types. More than 70% of first-time-buyers

Table 1: Summary Statistics (All Borrowers).

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Loan Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest Rate (%)</td>
<td>2,236,025</td>
<td>2.57</td>
<td>0.79</td>
<td>1.26</td>
<td>6.2</td>
</tr>
<tr>
<td>Lender Fee (£)</td>
<td>2,236,025</td>
<td>467</td>
<td>631</td>
<td>0</td>
<td>2405</td>
</tr>
<tr>
<td>Loan Value (£1000)</td>
<td>2,236,025</td>
<td>159</td>
<td>129</td>
<td>49</td>
<td>903</td>
</tr>
<tr>
<td>Loan-to-Value (%)</td>
<td>2,236,025</td>
<td>60</td>
<td>23</td>
<td>15</td>
<td>98</td>
</tr>
<tr>
<td>Maturity (Years)</td>
<td>2,236,025</td>
<td>25</td>
<td>8</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>Initial Period (Years)</td>
<td>2,236,025</td>
<td>3.22</td>
<td>2.4</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Panel B: Borrower Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-Time-Buyers</td>
<td>2,236,025</td>
<td>0.19</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Home-Movers</td>
<td>2,236,025</td>
<td>0.23</td>
<td>0.42</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Internal Remortgagors</td>
<td>2,236,025</td>
<td>0.22</td>
<td>0.41</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>External Remortgagors</td>
<td>2,236,025</td>
<td>0.36</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gross Income (£1000)</td>
<td>1,506,724</td>
<td>62.13</td>
<td>48.2</td>
<td>10</td>
<td>523</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>1,506,724</td>
<td>38</td>
<td>9.6</td>
<td>18</td>
<td>85</td>
</tr>
<tr>
<td>Loan-to-Income</td>
<td>1,506,724</td>
<td>3.12</td>
<td>1.2</td>
<td>1.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Credit Score</td>
<td>984,471</td>
<td>482</td>
<td>66.3</td>
<td>250</td>
<td>765</td>
</tr>
</tbody>
</table>
originate their mortgage through a brokerage. Intermediation is also the most popular distribution channel in the home-movers and external remortgagors markets, with shares above 60%. Only 11% of internal remortgagors (those refinancing with the same lender) hired a broker when renewing their mortgage. On average, a broker will receive over £800 per mortgage, with most of the revenue coming from lenders’ commissions and only a small fraction (if any at all) from broker fees. Figure A.3 plots the distribution of broker fees, revealing that most broker companies charge borrowers zero fees for their services. On the other hand, commissions from lenders are quite generous. Figure A.4 shows the distribution of commission rates across borrower types. No within-lender-broker variation exists for a given period, implying commissions are the same for all products within each lender-broker pair. However, significant heterogeneity exists across brokers and across time, with commission rates ranging between 0.3% and 0.8% of the loan.

Panels B and C of Table 2 report the average number of agreements between brokers and lenders and the fraction that were formed or broken during my sample period. The average lender deals with 13 broker companies, whereas the average brokerage sells products from 18 lenders. However, there is heterogeneity both across brokers and across lenders. For example, one lender has no dealings with brokers, whereas another lender has agreements with all brokers. Likewise, some broker companies have very few lenders in their network, whereas others include almost every lender. There is variation in broker-lender networks across time. Throughout my sample period, there are 18% new agreements and 11% of links are broken.

Finally, I collect quarterly postcode-level data on all bank branches in the UK from Experian’s Goad and Shop*Point datasets. This panel allows me to identify branch openings and closures for all lenders in my sample. Figure 1 plots time-series variation in the number of branches for the largest lenders. Aggregate total branches fall by almost 17% during my sample period. Despite the general downward trend, branch openings and closures are very heterogeneous across lenders and geographical areas (see Figure A.5). For example, London and other large urban conurbations experience large openings for some lenders, whereas some rural areas are essentially bank-branch deserts.

Overall, the combination of these three sources of data provides me with a very rich, loan-level dataset that is ideal for analyzing the effects of broker remuneration on the market. This paper is the first to exploit these combined datasets and the first one to address the role of brokers in this market.
Table 2: Summary Statistics for Intermediated Sales and Broker-Lender Agreements.

PANEL A: Intermediated sales and broker payments.

<table>
<thead>
<tr>
<th></th>
<th>All Borrowers</th>
<th>First-Time Buyers</th>
<th>Home Movers</th>
<th>Internal Remortgagors</th>
<th>External Remortgagors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediated</td>
<td>46%</td>
<td>72%</td>
<td>64%</td>
<td>11%</td>
<td>63%</td>
</tr>
<tr>
<td>Commission (£)</td>
<td>723</td>
<td>661</td>
<td>845</td>
<td>708</td>
<td>543</td>
</tr>
<tr>
<td>Commission Rate (%)</td>
<td>0.41</td>
<td>0.42</td>
<td>0.41</td>
<td>0.41</td>
<td>0.37</td>
</tr>
<tr>
<td>Broker Fee (£)</td>
<td>141</td>
<td>167</td>
<td>164</td>
<td>3</td>
<td>129</td>
</tr>
<tr>
<td>N</td>
<td>2,236,025</td>
<td>426,958</td>
<td>510,833</td>
<td>797,430</td>
<td>500,804</td>
</tr>
</tbody>
</table>

Panel B: Agreements between largest lenders and broker companies.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Brokers per Lender</td>
<td>13</td>
<td>7</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>Number of Lenders per Broker</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>14</td>
</tr>
</tbody>
</table>

Panel C: Changes in agreements between 2015Q1-2016Q2.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lender-Broker Links Broken</td>
<td>11%</td>
</tr>
<tr>
<td>Lender-Broker Links Formed</td>
<td>18%</td>
</tr>
</tbody>
</table>

Note: Panel A summarizes the percentage of borrowers who originate their mortgage through a broker and the average per-sale commissions and fees brokers receive by lenders and households, respectively. Panels B and C report all agreements between the largest 16 lenders and 23 broker companies, which account for 87% of the first-time-buyers market. These constitute the set of lenders and brokers that I will use later when estimating the model.
Figure 1: Total Branches for largest lenders

Note: Data obtained from Experian Shop*Point and Goad datasets. Total branches account for both openings and closures during the sample period.

3 Motivating Evidence

In this section, I document in more detail evidence in favor of the economic trade-offs and conflicts of interest that can potentially exist in the presence of commissions in this market. On the one hand, commissions may distort brokers’ advice. On the other hand, they can increase competition and efficiency upstream, leading to overall lower prices. I now present motivating evidence suggesting both sides of the trade-off are present in the UK mortgage market, and that the data supports the inclusion of these forces in the model.

3.1 Brokers’ Advice and Commissions

Commissions from lenders can potentially bias brokers’ recommendations towards high-commission products. This distortion can be detrimental for borrowers if products offering high payments to brokers are also more expensive. Figure 2 illustrates this concern with a conceptual example using two lenders offering one of the most popular products in the
market: a two-year fixed, 75% loan-to-value mortgage. Lender B’s product is always cheaper, but Lender A’s product pays a higher commission to brokers. Despite being more expensive, Lender A’s product has a higher market share via direct sales. Unobservable characteristics, such as more advertisement or lax screening, could explain this gap in direct sales between lenders A and B. The distortion that I would like to address in this section relates to the even larger difference in market shares observed for intermediated sales. In particular, in this subsection, I provide evidence showing that differences in commission payments partly explain the gap in broker market shares.

It is not obvious that commissions will influence brokers’ sales choices. In the UK mortgage market, mechanisms are in place that discipline brokers and help ensure they act in their customers’ best interests. For example, given the high-frequency of remortgaging in the UK market, repeated sales can align borrowers’ and brokers’ incentives. Brokers may maintain a good relationship with households in order to ensure they return for future mortgage transactions. Indeed, in a recent consumer survey, 68% of households said they were satisfied with their broker and would use the same intermediary in the future. Brokers can also be motivated by reputation concerns. Consumer surveys find that 23% of borrowers chose their broker because a real estate agent recommended it, and 29% because a friend or relative suggested it. Therefore, in a market where referrals seem to play a critical role, brokers are less likely to engage in misconduct for fear of not being recommended in the future. All in all, whether brokers are reacting to commissions despite repeated sales and reputation concerns remains an empirical question.

In an attempt to capture the effect of commissions on brokers’ product choices, I estimate the following fixed-effects specification at the product-broker-month-county level:

$$ Share_{bjtc} = \alpha + \theta Commission_{blt} + \delta_{jtc} + \gamma_{btc} + \psi_{ble} + \epsilon_{bjtc}, $$

(1)

where the dependent variable is the percentage share of product j in broker b’s sales portfolio at month t in county c. The independent variable $Commission_{blt}$ is the per-sale commission rate that broker b receives from lender l in month t. To solve some of the endogeneity concerns when regressing product shares on commissions, I control for confounders by absorbing a rich set of fixed effects at the county level. I include product-time-county fixed effects to account for time-varying product characteristics that could affect brokers’ product preferences, such as interest rates, advertisement, and fees. I also add broker-time-county fixed effects to control for time-varying broker characteristics that could influence brokers’ choices, such as their borrower clientèle. Finally, I also add broker-lender-county fixed effects to account for preexisting dealings between a broker and a lender that could result in preferential treatment. This four-differences approach deals with the obvious endogeneity

Figure 2: Example of (Potential) Distortion in a “Vanilla” Mortgage

Note: This figure illustrates prices, commissions, and sales for two different lenders offering one of the most popular products in the market (2-year fixed, 75% LTV). Prices include interest rates and lender fees, and commission rates are expressed as a percentage of the loan.
Table 3: Product Market Shares and Commissions.

<table>
<thead>
<tr>
<th>Dependent Variable: Product Market Share in Broker Sales (%)</th>
<th>All Borrowers (1)</th>
<th>Only FTBs (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commission Rate (% loan)</td>
<td>0.163* (0.097)</td>
<td>0.271* (0.180)</td>
</tr>
<tr>
<td>Product-Time-County FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Broker-Time-County FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Broker-Lender-County FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>327,750</td>
<td>153,416</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.953</td>
<td>0.937</td>
</tr>
</tbody>
</table>

Average Dependent Variable (%)	0.53	0.47
Average Commission Rate (%)	0.40	0.41
Average Total Commission per Loan (£)	776	802

Note: The dependent variable is the product share in a broker’s sales portfolio each month in a county. The commission rate is the percentage of the loan paid by the lender to the broker for the sale of a product. Column (1) uses all borrowers, while Column (2) considers only first-time-buyers. Standard errors in parentheses are clustered at the broker and county levels, and (*) corresponds to a p-value lower than 0.1.

concerns; however, the estimate for \(\theta \) could still be biased if broker-product-time-county-varying confounding variables exist. I will further discuss these endogeneity issues when estimating the model. At that stage, I will try to address these concerns using an instrumental variables approach exploiting time-variation in cost-shifters at the broker-lender level.

Table 3 presents estimates for equation 1. The first column uses the entire sample, and the second column focuses exclusively on first-time-buyers. Both specifications control for a rich set of fixed effects, resulting in a positive and significant coefficient with values of 0.163 for all borrowers and 0.271 for first-time buyers. Thus, products with a 13% (£100) higher commission rate for a broker have, on average, almost a 2% higher market share within a broker’s portfolio. Table 3 shows suggestive evidence that, after controlling for the obvious confounders, brokers seem to be reacting to changes in commission rates.

Estimates in Table 3 exploit within-broker-product variation across time within a county. Results suggest changes in a product’s commission will, on average, increase the products’ share within a broker’s sales portfolio. However, a broker’s advice can also be biased across
different products. For instance, brokers may be more likely to recommend products with shorter fixed initial periods that will require households to refinance more frequently. Brokers receive another commission payment each time borrowers need to remortgage. Brokers also have incentives to push borrowers toward higher loan-to-value products. Because commissions are expressed as a percentage of the loan amount, brokers may persuade households to borrow as much as possible.4

Both types of distortions are, however, difficult to identify empirically due to selection into intermediation. Indeed, the data shows brokers selling more two-year fixed mortgages (vs. three- and five-year fixed) and higher loan-to-value products than the direct sales channel. Still, unobservable (to the econometrician) borrower characteristics could explain these choices. Households originating their mortgages through brokers may have different preferences than those going directly to lenders, and brokers could be selecting the best products conditional on such (unobservable) preferences. To get a sense of any evidence in the data that might suggest selection into brokerage, I calculate borrowers’ propensity scores for buying mortgages with (1) high loan-to-value and (2) a short initial fixed period. I use as predictors the borrower’s characteristics (income, age, credit score, and whether it is a joint application), property characteristics (house price and location), and month of the year. Figure A.6 plots these propensity scores separately for direct and intermediated sales. Based on observable characteristics, borrowers going through brokers are slightly more likely to buy a mortgage with high loan-to-value and short initial period. However, I cannot reject that distributions for both channels are statistically different. Unobservable product and borrower characteristics can be driving the observed differences in choices between direct and intermediated sales. Brokers’ preferences over product characteristics could also be an explanation. In the model in Section 4, I explicitly account for borrowers’ selection into intermediation and brokers’ incentives both within and across product types. I am able to separately identify the borrower and broker preferences over product characteristics, other than commissions.

3.2 Upstream Competition and Commissions

Despite the recent uptake of online distribution channels in many markets, bank branches still play a crucial role in mortgage originations in the UK. Panel A in Figure 3 shows that lenders with a more significant concentration of branches in a given county account for a higher share of direct sales in that same county. This strong positive correlation between direct sales and

4In the US, the media and consumer groups have argued that brokers advice to households to borrow beyond their means exacerbated the financial crisis. See, for example, Pleven and Craig, “Deal Fees under Fire Amid Mortgage Crisis; Guaranteed Rewards of Bankers, Middlemen Are in the Spotlight,” Wall Street Journal, January 17, 2008; and "Steered wrong: Brokers, borrowers, and subprime loans," Center for Responsible Lending, 2008. Similar concerns have been raised in Europe by the Basel Committee on Banking Supervision’s Report, "Customer suitability in the retail sale of financial products and services," 2008.
Figure 3: Branches, Direct Sales and Commissions

PANEL A: Correlation between branches and direct sales

PANEL B: Correlation between branches and average commissions

Note: On the X-axes I sort all county-lender pairs according to the lender’s concentration of branches in the county. In Panel A, I then average direct sales for each lender within a county. In Panel B, I calculate the average commission rates for each lender within a county.
branch presence still holds after adding lender and area fixed effects to account for local
demand and lender preferences. Moreover, recent changes in regulation implemented by
the Mortgage Market Review (MMR) in April 2014 have intensified the importance of bank
branches as a distribution channel. The MMR requires lenders to provide advice for all sales
that require any “interaction” with borrowers. Lenders have been very conservative in their
interpretation of these “interaction trigger” and now provide lengthy advice to almost all of
their borrowers, except for internal remortgagors. Although some lenders give the option of
speaking to an advisor over the phone, most borrowers are redirected to the nearest branch
for an appointment with a specialized advisor to discuss their mortgage application. Both
face-to-face and telephone interviews of almost two hours on average. However, no such
requirement exists for borrowers originating their mortgages via brokers. Lenders seem to
be taking advantage of this fact and are using commissions to promote their products to
intermediaries in areas where borrowers would have to travel a significant distance to their
nearest branch for an interview. Panel B in Figure 3 shows that lenders are also more likely
to pay higher average commission rates in counties where they have a lower concentration of
branches. In such cases, commissions and brokers can increase welfare by (1) lowering lenders’
distribution costs, (2) reducing borrowers’ origination costs and (3) increasing households’
available choice sets, especially in the so-called “bank-branch deserts.”

Moreover, commissions also allow challenger banks to introduce and promote their
products in the market without the need to set up extensive (and expensive) branch networks.
Panel A in Figure 4 plots average interest and commission rates for challenger and non-
challenger lenders over my sample period, and Panel B in Figure 4 shows the corresponding
market shares for direct and intermediated sales channels. On average, challenger banks
pay higher commission rates and account for a higher market share in brokers’ sales than in
direct sales. To formalize this relationship between challenger banks and intermediated sales,
I estimate the following specification:

\[
Challenger_{ijt} = \alpha + \delta \text{Intermediated}_{ijt} + \beta X_{ijt} + \epsilon_{ijt},
\]

where \(Challenger_{ijt}\) is a dummy equal to one if household \(i\) at time \(t\) purchased
mortgage product \(j\) from a challenger bank, and zero otherwise. The independent variable
\(Intermediated_{ijt}\) is a dummy variable equal to one if the household originated the mortgage
through a broker, and zero if it used the direct channel instead. Covariates \(X_{ijt}\) control for
observable borrower, product, geographical, and time-period characteristics.

Table 4 shows estimates for equation 2. After controlling for borrower and product
characteristics and year-month and county fixed effects, first-time-buyers going to a broker
have a 7% higher probability of originating their mortgage through a challenger bank.
Although this relationship can be driven by unobservables and selection into intermediation,
Figure 4: Commissions and Market Shares across Lenders

PANEL A: Average commissions for the Big Six and challenger banks.

PANEL B: Market shares across lender types and sales channels.
brokers seem to be increasing challenger banks’ market shares. Given that for many products in the market, challenger banks offer better rates than the Big Six, commissions can benefit households via their allocative role in the broker channel, inducing higher matching rates between borrowers and challenger banks.

3.3 The Need for a Model

The results in the preceding subsections 3.1 and 3.2 point to a key trade-off emerging from the presence of brokers in this market. On the one hand, brokers’ advice can be distorted towards high-commission products, potentially reducing consumer surplus. On the other hand, brokers allow challenger banks to introduce their products without the need to invest in an extensive branch network, increasing competition upstream and potentially leading to lower prices. Moreover, brokers also allow established banks to promote their products in areas where they have limited branch density, reducing their distributional costs and eventually resulting in efficiency gains and lower prices. Finally, as shown in section 2.2, consumers currently pay very low fees (in many instances, no fee at all) when hiring a broker. These low charges are possible only because brokers are getting most of their revenue directly from lenders. Commission payments decrease the price consumers pay for valuable expert services that reduce household search costs and increase the information on available products. Given these trade-offs, the net effect of commissions on consumer surplus depends
on which of all these forces dominates in equilibrium.

To evaluate the overall impact of a policy restricting commission payments, empirically assessing the relative sizes of these effects on consumer surplus is necessary. This may prove to be difficult for three reasons. First, no counterfactual scenario without commissions exists in this market. This limitation precludes evaluating the performance of such a policy in this context. The second challenge arises due to selection into intermediation. Consumers decide whether to hire a broker, based on observable and unobservable (to the econometrician) characteristics of both the borrower and the broker. Therefore, in the presence of this endogenous choice, reduced-form methods would require strong assumptions when evaluating such behavior, which could ultimately bias the resulting estimates. Finally, contract negotiations between lenders and brokers endogenously determine commission payments in this market. To evaluate the effects of a hypothetical cap or ban on such commissions, understanding the incentives and the trade-offs lenders and brokers face when deciding whom to include or exclude from their sales networks and what commissions to set in such agreements is necessary.

In the rest of the paper, I present and quantify a structural model of the UK mortgage market that features all trade-offs discussed above. Such a framework will help overcome the empirical limitations described in this section and will enable me to evaluate the net effect on consumer surplus of restricting upstream commissions.

4 A Model of the UK Mortgage Market

4.1 Set-up

In this section, I develop a structural model of the UK mortgage market that predicts: (i) household demand for mortgage products, (ii) household demand for brokerage services, (iii) interest rates offered by lenders, and (iv) negotiated lender-broker-specific sales commissions. I later estimate this model and use it as a tool to simulate counterfactual policy analysis.

The model focuses on the interactions between lenders, brokers, and households in the UK mortgage market. Figure 5 describes the vertical and horizontal relations in this market between all main players. A household consists of one or two potential borrowers in need of a mortgage for the purchase of a residential property. A lender is a bank or building society selling differentiated mortgage products to households. A broker is a firm that helps households get a mortgage by providing advice on available products and sorting out application and origination paperwork with the lender. The timing of events is as follows. First, brokers negotiate with lenders for the terms of lenders’ inclusion in the brokers’ networks. If successful, these bilateral negotiations determine the set of commissions paid by lenders to brokers for the sale of any given product. Next, lenders set prices in the
Assume there are markets labeled $t = 1, \ldots, T$, each with households indexed by $i = 1, \ldots, I_t$ and with heterogeneous search costs and preferences across product characteristics. I define a market as half-year in my data, and each household can only be active in one market and purchase only one product. In each market there are $l = 1, \ldots, L_t$ lenders, each selling J_{lt}
horizontally differentiated mortgage products, indexed by $j = 1, ..., J_t$. Likewise, each market has B_t brokers, indexed by $b = 1, ..., B_t$.

4.2.1 Mortgage Product Choice

In the last stage, after selecting a sales channel, households choose one of the available mortgage products. I follow the characteristics approach (Lancaster 1979) and assume households’ mortgage demand is a function of observable household characteristics, random preferences, product attributes, and a vector of preference parameters. I also assume that the problem households face when choosing a mortgage product will differ depending on their chosen sales channel, which is predetermined at this stage.

Direct Channel. Consider household i in market t that has opted for lenders’ in-house distribution channels. I make the parametric assumption that the indirect utility of such household has the following linear form:

$$ V_{ijlt} = \alpha r_{jlt} + \beta X_{jl} + \xi_{jlt} + \lambda Branches_{ilt} + \epsilon_{ijlt}, $$

where r_{jlt} is the interest rate of product j offered by lender l in market t; X_{jl} are time-invariant product characteristics including lender, maximum loan-to-value, and initial fixed period; ξ_{jlt} captures unobservable product-lender-market characteristics affecting household utility in a market (e.g., advertising, screening); and ϵ_{ijlt} is an idiosyncratic taste shock. Finally, $Branches_{ilt}$ accounts for the number of branches that lender l has in household i’s county, and λ is the associated preference parameter. By adding branches in the horizontal differentiation dimension, I account for costs associated with application and origination processes that households may face, along the lines of Hastings et al. (2017) and Benetton (2018).

Household i will purchase mortgage product jl if and only if it attains the highest utility among all available products in the household’s consideration choice set, C_{it}, which I assume is household specific and restricted by household characteristics. That is, household i will choose product j from lender l if (1) it is part of the available choice set, and (2) $V_{ijlt} > V_{ikst}$, $\forall ks \in C_{it}$. Consider $V_{11}, V_{21}, ..., V_{jl}, ..., V_{JL}$ to be the utilities for all product-lender alternatives, where J and L are the number of products and lenders in choice set C_{it}, respectively. Then, the probability that alternative jl is chosen at a purchase occasion is:

$$ s_{ijlt} = Pr(\text{jl chosen} \mid C_{it}) = Pr(V_{ijlt} > V_{ikst} \text{ for all } ks \in C_{it}) . $$

Intermediated Channel. Consider now household i' has hired broker b in market t. Let $b(i')$ denote this broker-household pair. I assume that each broker-household pair $b(i')$ is a
composite agent that maximizes the joint indirect utility, which I assume to be a weighted average of the indirect utility of the household, V_{ijlt}^b, and that of the broker, W_{bjlt}. Moreover, I make the parametric assumption that the indirect utility of the pair $b(i')$ for the purchase of product j from lender l in market t takes the following form:

$$V_{b(i')}_{jlt} = (1 - \theta_b) \left(\beta X_{jl} + \alpha r_{jlt} + \xi_{jlt} + \epsilon_{ijlt} \right)$$

where the indirect utility of the broker includes a percentage commission c_{lbt} that broker b receives from lender l, as well as product characteristics over which the broker may have some preferences. For example, brokers may prefer products with shorter initial fixed periods. These type of products incentivize households to refinance more frequently, which in turn leads to more business (and commissions) for brokers. Moreover, brokers may prefer higher loan-to-value products because commissions are expressed as a percentage of the loan. I also account for the possibility of brokers’ preferences being affected by unobservable (to the econometrician) broker-lender-market characteristics, ζ_{blt}, such as preferential treatment. Parameter θ_b in equation 5 captures the average downstream market power of broker b and the share of surplus a broker can extract from her average client. This parameter captures the magnitude of the agency problem households face when dealing with broker b and the influence/negotiation power the latter has over the consumer. If θ_b is equal to zero, then the broker is fully benevolent in the sense that demand-side incentives are so large that brokers’ and households’ incentives are fully aligned. If, on the other hand, θ_b is equal to one, then supply-side incentives fully dominate, and the broker can extract all surplus from households. Finally, households’ indirect utility is analogous to that of equation 3 in the direct channel, with the exception that bank branches do not play a role when getting a mortgage through a broker.5

Each broker-household pair maximizes the joint indirect utility subject to their available choice set, $C_{b(i')}_{lt}$. This choice set is broker-household specific, and it is restricted by household characteristics (as in the direct channel), but also by broker b’s network of lenders. At this stage, a broker can only originate mortgages with lenders with whom she reached an agreement in the previous bargaining stage. I denote this subset of lenders N_{blt}. Therefore, broker-household $b(i')$ will choose product j from lender l in N_{blt} if (1) it is part of the

5Reduced-form evidence in Section 3.2 suggests that branch presence matters only for direct sales. Moreover, when adding this coefficient in the estimation for broker sales, the effect is small and not significantly different from zero. After controlling for commissions, branch proximity does not seem to play a role when originating a mortgage through a broker.
available choice set $C_{b(i')t}$, and (2) $V_{b(i')jl} > V_{b(i')ks}$, $\forall ks \in C_{b(i')t}$. Finally, the probability that product jl is chosen, $s_{b(i')jl}$, conditional on the available choice set, $C_{b(i')t}$, is analogous to the one defined in equation 4 for the direct channel.

4.2.2 Sales Channel Choice

Before choosing a mortgage product, households need to decide whether to go directly to lenders’ in-house distribution channels or hire a broker. I assume each household i has a search cost κ_i. This search cost is a fixed cost that households incur when gathering information on all products available to them in market t. I assume search costs are heterogeneous and assigned via i.i.d. draws from a distribution F_κ. If household i decides to use the direct sales channel, it will incur the search cost κ_i to learn about available products and to deal with the administrative aspects of the application. Household i can also choose the brokerage option. In this case, the household is matched to broker b with probability π_{bit} and has to pay a broker fee f_{bit} for the broker’s services. I assume (1) households do not search across brokers, and (2) no competition exists among brokers. Therefore, I consider broker fees as exogenous.\(^6\)

Household i will choose the sales channel that provides the highest (net) ex-ante expected utility, which depends on the household’s search cost, broker fees, and ex-ante expected maximum indirect utility from each sales channel. Let κ_i be the search cost that makes household i indifferent between both sales channels. This indifference cut-off value is:

\[
\underbrace{E[\max_{jl} V_{ijlt}^D(\eta) | Direct]} - \hat{\kappa}_i = \sum_{b \in B_t} \pi_{b(i)t} \left(E[\max_{jl} V_{b(i)jl}(\eta) | b] - \alpha_i f_{bit} \right),
\]

where η is a vector of all household-preference parameters; $E[\max_{jl} V_{ijlt}^D(\eta) | Direct]$ and $E[\max_{jl} V_{b(i)jl}(\eta) | b]$ are the ex-ante expected household utilities of household i going directly to the lender and hiring broker b, respectively; $\pi_{b(i)t}$ is the probability that household i is matched to broker b; and f_{bit} is the broker fee paid by household i when hiring broker b. I multiply the fee by the price coefficient, α_i in equations 3 and 5, to transform money into utils and make the fee comparable to the expected utilities. This indifference condition in equation 6 implies that, if household i has a search-cost draw κ_i that is greater than κ_i, it will choose to hire a broker. If it has a search-cost draw κ_i smaller than $\hat{\kappa}_i$, it will opt for the direct sales channel and search for a mortgage across lenders’ in-house distribution channels.

\(^6\)As already presented in Figure A.3, broker fees in this market are significantly low, with many broker companies offering their services at no cost for the borrower. Thus, households always have the option to hire brokerage services at a zero fee.
4.3 Supply

4.3.1 Lender Mortgage Pricing

Each market \(t \) contains \(L_t \) lenders that are for-profit organizations selling mortgage products to households. They maximize expected profits by setting interest rates (prices) for each of their products. I define the set of products offered by lender \(l \) in market \(t \) as \(J_{lt} \). Lender \(l \)’s profits from a direct sale of product \(j \) in market \(t \) are:

\[
\Pi^D_{jt} = t_j (r_{jt} - mc^D_{jt}),
\]

where \(t_j \) is the initial fixed period for product \(j \), \(r_{jt} \) is the initial rate for that product in market \(t \), and \(mc^D_{jt} \) is the marginal cost of selling product \(j \) in market \(t \) through a direct distribution channel. Similarly, lender \(l \)’s profits from selling product \(j \) in \(J_{lt} \) in market \(t \) via an intermediated sale from broker \(b \) are:

\[
\Pi^B_{jt} = t_j (r_{jt} - mc^B_{jt}) - c_{ltb},
\]

where \(c_{ltb} \) is the commission paid to broker \(b \) in market \(t \) for the sale of product \(j \) from lender \(l \), and \(mc^B_{jt} \) is the marginal cost of selling product \(j \) in market \(t \) through the broker channel. I allow for marginal costs to vary across sales channels, because there could be ways in which brokers reduce lenders’ origination costs (e.g., screening, income verification). I also implicitly assume that a household’s loan quantity choice is equal to one, and it is not affected by changes in the interest rate. That is, a change in the interest rate will affect households’ choice probabilities across products, but not the associated loan amount (conditional on the loan-to-value bands). Therefore, I am only accounting for households’ discrete choice in lenders’ profits, as opposed to previous work that also endogeneizes households’ choice of loan amount (see Benetton 2018). Finally, I am assuming all households remortgage at the end of the initial period (see Cloyne et al. 2017) and no default.

Using demand choice probabilities as defined by equation 4 and cut-off search costs as characterized in equation 6, lender \(l \)’s expected profits from serving household \(i \) in market \(t \) are:

\[
\Pi^l_{it} = F^l_{e}(\hat{k}_i) \ast \sum_{j \in J_{lt}} (s_{ijlt} \ast \Pi^D_{jt}) + \left[1 - F^l_{e}(\hat{k}_i) \right] \ast \sum_{j \in J_{lt}} \sum_{b \in N_{lt}} (\pi_{b(i)lt} \ast s_{b(i)jt} \ast \Pi^B_{jt}),
\]

where \(s_{ijlt} \) and \(s_{b(i)jt} \) are choice probabilities for household \(i \) choosing product \(j \) conditional on choice channel, \(F^l_{e}(\hat{k}_i) \) represents the probability that household \(i \) will choose to go directly to the lender’s distribution channel, and \(1 - F^l_{e}(\hat{k}_{it}) \) is the probability that it will decide to hire a broker. Conditional on other lenders’ interest rates, lender \(l \) will decide in
each market \(t \) the initial rate for each product \(j \) in \(J_{lt} \) that maximizes the sum of equation 9 across all households in each market. Thus, in each market, lender \(l \) solves the following maximization problem:

\[
\max_{\{r_{jt}\}_{j \in J_{lt}}} \Pi^l_t = \sum_{i \in I_t} \Pi^l_{it}(r_{1t}, \ldots, r_{J_{lt}}),
\]

with the corresponding first-order conditions with respect to the interest rate of product \(j \) in market \(t \) given by:

\[
\frac{\partial \Pi^l_t}{\partial r_{jt}} = \sum_{i \in I_t} \left[F_{\kappa}(\hat{\kappa}_{it}) * s_{ijlt} * t_j
+ F_{\kappa}(\hat{\kappa}_{it}) \sum_{k \in J_{lt}} \frac{\partial s_{iklt}}{\partial r_{jt}} * [t_k (r_{kt} - mc_{Bkt})]
+ f_{\kappa}(\hat{\kappa}_{it}) * \frac{\partial m_{lm}}{\partial r_{jt}} \sum_{k \in J_{lt}} s_{iklt} * [t_k (r_{kt} - mc_{Bkt})]
+ \left[1 - F_{\kappa}(\hat{\kappa}_{it}) \right] \sum_{b=1}^{B} \pi_{b(i)lt} * s_{b(i)jlt} * t_j
+ \left[1 - F_{\kappa}(\hat{\kappa}_{it}) \right] \sum_{b=1}^{B} \pi_{b(i)lt} \sum_{k \in J_{lt}} \frac{\partial s_{b(i)klt}}{\partial r_{jt}} * [t_k (r_{kt} - mc_{Bkt}) - c_{blt}] \right]
- f_{\kappa}(\hat{\kappa}_{it}) * \frac{\partial m_{lm}}{\partial r_{jt}} \sum_{b=1}^{B} \pi_{b(i)lt} \sum_{k \in J_{lt}} s_{b(i)klt} * [t_k (r_{kt} - mc_{Bkt}) - c_{blt}]
\]

\[
= 0 \quad \forall j \in J_{lt}.
\]

In (11), the first and fourth terms capture the extra profits for both direct and intermediated sales due to a higher interest rate. The second and fifth terms show the effect of higher rates on choice probabilities for all products from lender \(l \). Finally, the third and last terms capture the change in the probability of households choosing the direct channel due to higher interest rates. Solving for the interest rate in (11) gives the following (I omit the market subscript for simplicity):
\[r_j^* = \sum_{i \in \mathcal{I}_m} \left[mc_j^D \rho_j^P + \sum_{b=1}^B \pi_{b(i)}(mc_j^B + \frac{c_{lb}}{t_j}) \rho_j^b \right] \]

Effective average marginal cost

\[
- F_k s_{ijl} \frac{\rho_j^D}{F_k \frac{\partial s_{ijl}}{\partial r_j} + f_k \frac{\partial \hat{k}}{\partial r_j} s_{ijl}} - (1 - F_k) \sum_{b=1}^B \pi_{b(i)} s_{b(i)jl} \frac{\rho_j^b}{(1 - F_k) \frac{\partial s_{b(i)jl}}{\partial r_j} - f_k \frac{\partial \hat{k}_i}{\partial r_j} s_{b(i)jl}} \]

Full mark-up

\[
- \sum_{k \neq j \in \mathcal{I}_l} \frac{1}{t_j} \left(F_k \frac{\partial s_{ikl}}{\partial r_j} + f_k \frac{\partial \hat{k}}{\partial r_j} s_{ikl} \right) \frac{\Pi_k^D \rho_k^D}{F_k \frac{\partial s_{ijl}}{\partial r_j} + f_k \frac{\partial \hat{k}_i}{\partial r_j} s_{ijl}} \]

Other products via direct

\[
- \sum_{k \neq j \in \mathcal{I}_l} \frac{1}{t_j} \sum_{b=1}^B \pi_{b(i)} \left((1 - F_k) \frac{\partial s_{b(i)kl}}{\partial r_j} - f_k \frac{\partial \hat{k}}{\partial r_j} s_{b(i)kl} \right) \frac{\Pi_k^B \rho_k^b}{(1 - F_k) \frac{\partial s_{b(i)jl}}{\partial r_j} - f_k \frac{\partial \hat{k}_i}{\partial r_j} s_{b(i)jl}} \right], \text{ Other products via brokers} \]

where \(\rho_j^D \) is the effective probability of household \(i \) going direct and purchasing product \(j \). Likewise, \(\rho_j^b \) is the effective probability of household \(i \) going to broker and purchasing product \(j \). Expressions for both \(\rho_j^D \) and \(\rho_j^b \) are:

\[\rho_j^D = \frac{F_k \frac{\partial s_{ijl}}{\partial r_j} + f_k \frac{\partial \hat{k}}{\partial r_j} s_{ijl}}{F_k \frac{\partial s_{ijl}}{\partial r_j} + f_k \frac{\partial \hat{k}}{\partial r_j} s_{ijl} + (1 - F_k) \sum_{b \in B} \pi_{b(i)} \frac{\partial s_{b(i)jl}}{\partial r_j} - f_k \frac{\partial \hat{k}_{b(i)}}{\partial r_j} \sum_{b \in B} \pi_{b(i)} s_{b(i)jl}} \] (13)

and

\[\rho_j^b = \frac{(1 - F_k) \frac{\partial s_{b(i)jl}}{\partial r_j} - f_k \frac{\partial \hat{k}_i}{\partial r_j} s_{b(i)jl}}{F_k \frac{\partial s_{ijl}}{\partial r_j} + f_k \frac{\partial \hat{k}}{\partial r_j} s_{ijl} + (1 - F_k) \sum_{b \in B} \pi_{b(i)} \frac{\partial s_{b(i)jl}}{\partial r_j} - f_k \frac{\partial \hat{k}_{b(i)}}{\partial r_j} \sum_{b \in B} \pi_{b(i)} s_{b(i)jl}} \] (14)

Note that if no brokers exist in the market and all lenders offer only one product, expression (12) collapses to the standard mark-up pricing formula:

\[r_j^* = \sum_{i \in \mathcal{I}_m} \left(mc_j^D - s_{ijl} \times \left(\frac{\partial s_{ijl}}{\partial r_j} \right)^{-1} \right). \]
4.3.2 Broker-Lender Bargaining over Commissions

In each market t, before setting prices and making any sales, brokers and lenders bilaterally meet and bargain à la Nash to determine whether to form an agreement. If successful, they set a per-sale commission that is expressed as a percentage of the final loan amount. $L_t \times B_t$ contracts are possible, and brokers and lenders have complete information about all payoff functions. I assume the negotiated commission for each contract solves the Nash bargaining solution for that contract. Thus, the equilibrium commission vector maximizes the Nash product of each pair’s gains from trade, conditional on agreements reached by all other pairs. Moreover, given that the agreement value for a broker dealing with a given lender may change depending on whether she has reached an agreement with another lender with similar mortgage products, I also assume each contract remains the same even if negotiation for another contract fails. Thus, all negotiations within market t are simultaneous and separate, such that commissions set in other meetings are not known but conjectured. This setting is motivated by the model presented in Horn & Wolinsky (1988), and it is commonly used by other empirical papers (see, e.g., Crawford & Yurukoglu 2012, Grennan 2013, Gowrisankaran et al. 2015, Ho & Lee 2017a,b, Crawford, Lee, Whinston & Yurukoglu 2018).\footnote{Recently, Collard-Wexler et al. (2018) have provided a non-cooperative foundation for this bargaining solution based on Rubinstein’s model of alternating offer bargaining.}

Despite these assumptions, lenders and brokers’ payoffs will still depend on outcomes of bilateral negotiations to which they are not party. I start by considering the ex-ante payoff structures for brokers and lenders, and their resulting participation constraints. I then show the Nash bargaining solution to each contract.

Each broker seeks to maximize his ex-ante expected payoff from serving all households that hire his services. Given lenders’ expected rates and households’ expected mortgage and sales channel choices, the ex-ante expected utility for broker b in market t, as a function of commissions and network structure N_{bt}, is:

$$W_{bt}(c_{bt}, N_{bt}) = \sum_{i \in I_t} \left(1 - F_{\hat{k}_i(c_i)}\right) \cdot \pi_{b(i)t} \cdot \sum_{j \in b(i)t, N_{bt}} s_{b(i)jlt}(c_{bt}) \cdot W_{bljt}(c_{lbt}), \quad (15)$$

where c_{bt} is all commissions payments of broker b and $W_{bljt}(c_{lbt})$ is the broker’s utility from originating product j with lender l in market t as defined in equation 5. Brokers’ ex-ante utility also depends on households’ probability of choosing the brokerage channel, $(1 - F_{\hat{k}_i(c_i)})$, which is a function of commission payments for all brokers in market t. Similarly, the ex-ante expected profits to lender l in market t, conditional on commissions and network structure N_{lt}, are:
\[\Pi_t'(c_{lt}, N_{lt}) = \sum_{i \in I_t} \left(F_{\kappa}(\hat{c}_{it}(c_t)) \sum_{j \in J_{lt}} (s_{ijlt} \cdot \Pi_{jt}^D) \right) \]

Revenue from Direct Sales

\[+ \left[1 - F_{\kappa}(\hat{c}_{it}(c_t)) \right] \sum_{j \in J_{lt}} \sum_{b \in N_{lt}} \left(\pi_{b(j)lt} \cdot s_{b(j)lt} * \Pi_{jt}(c_{ltb}) \right) \]

Revenue from Broker Sales

where \(c_t \) are all commissions in market \(t \) and \(c_{lt} \) is a vector with all commissions paid by lender \(l \) in market \(t \). Lender profits are defined by equations (7) and (8).

Brokers and lenders’ ex-ante expected profits are key in the Nash bargaining model, because they determine the agreement and disagreement payoffs. Using equations (15) and (9), the exponentiated product of the net payoffs from agreement is:

\[NP_{lb}^R(c_{ltb} | c_{-ltb}) = \left[\Pi_t'(c_{ltb} | c_{-ltb}) - \Pi_t'(0 | c_{-ltb}) \right]^{\beta_{lb}} \]

\times \left[W_{lb}(c_{ltb} | c_{-ltb}; N_{lb}) - W_{lb}(0 | c_{-ltb}; N_{lb} \setminus J_l) \right]^{1-\beta_{lb}}, \]

where \(\beta_{lb} \) is the bargaining power of lender \(l \) when negotiating with broker \(b \). Setting \(\beta_{lb} = 0.5 \) assumes symmetric Nash bargaining, and setting \(\beta_{lb} = 0 \) assumes Nash-Bertrand pricing behavior by lenders. Disagreement payoffs imply all commissions for broker \(b \) for the sale of all products from lender \(l \) are set to zero. That is, I treat products for each lender as an indivisible block, meaning that if bargaining breaks down between a lender and a broker, the broker cannot originate any of the lender’s products and the lender will not be part of the broker’s network. Moreover, I assume lenders face no capacity constraints. Hence, in the event of a disagreement between a lender and a broker, the broker can originate a mortgage with his ex-post second choice of lender without facing any restrictions on the lender’s side.

I define the Nash bargaining solution as the commission vector \(c_t^* \) that maximizes equation (17) for each Nash bargaining contract, conditioning on the outcomes of all other contracts. Therefore, each \(c_{ltb}^* \) in \(c_t^* \) solves the following maximization problem:
\[
\max_{\tilde{c}_{lb}} NP^b_t (c_{lb}|e^*_{-lb}) \quad \text{such that}
\]

(1) \(\Pi^l_t(c_{lb}|e^*_{-lb}; N_{lt}) - \Pi^l_t(0|e^*_{-lb}; N_{lt} \setminus b) \geq 0 \) (Lender Participation Constraint)

(2) \(W^b_t(c_{lb}|e^*_{-lb}; N_{bt}) - W^b_t(0|e^*_{-lb}; N_{bt} \setminus J_l) \geq 0 \) (Broker Participation Constraint),

where \(e^*_{-lb}\) is the equilibrium commission vector, excluding the commission of the lender-broker pair in the negotiation. Participation constraints (1) and (2) need to be imposed because an agreement is not mandatory and either broker or lender can unilaterally walk away. Expanding the participation constraint of lender \(l\) dealing with broker \(b\), I get:

\[
\Delta \Pi^l_t(c_{lb}|e^*_{-lb}) = \sum_{i \in I_t} \left[(1 - F_{\kappa}\hat{\kappa}_{it}(c_{lb}|e^*_{-lb})) \sum_{j \in J_{lt}} \pi_{b(i)t} s_{b(i)jlt}(c_{lb}|e^*_{-lb}) \Pi^{b}_{ijt}(c_{lb}) \right]
\]

\[
\text{Expected profits from dealing with broker } b
\]

\[
+ \left(F_{\kappa}\hat{\kappa}_{im}(c_{lb}|e^*_{-lb}) \right) - F_{\kappa}\hat{\kappa}_{it}(0|e^*_{-lb}) \text{)} \right) * \]

\[
\text{Change in sales channel choices}
\]

\[
* \sum_{j \in J_{lm}} \left(s_{ijlt} \Pi^{D}_{ijt} - \sum_{b' \neq b} \pi_{b'(i)t} s_{b'(i)jlt}(e^*_{-lb}) \Pi^{b'}_{ijt}(e^*_{-lb}) \right)
\]

\[
\text{Gains/losses from other sales channels}
\]

\[
\geq 0 .
\]

Equation (18) implies that, for the lender’s participation constraint to be non-binding, commission payments need to be below a certain threshold, \(\tilde{c}_{lb}\). Similarly, I can expand the participation constraint of broker \(b\) dealing with lender \(l\):
\[
\Delta W_{bl}(c_{lbt}|c_{*lbt}) = \sum_{i \in I_t} \pi_{b(i)t} \left[\left(1 - F_{\kappa}([\hat{\kappa}_{im}(c_{lbt}|c_{*lbt})] \right) \sum_{j \in J_t} s_{b(i)jt}(c_{lbt}|c_{*lbt}) W_{b(i)jt}(c_{lbt}) \right]
\]

Profits from selling products from lender \(t \)

\[
+ \left(1 - F_{\kappa}([\hat{\kappa}_{it}(c_{lbt}|c_{*lbt})] \right) \sum_{k \in J_t \atop l' \neq l} s_{b(i)klt}(c_{lbt}|c_{*lbt}) W_{b(i)klt}(c_{lbt})
\]

Gains/losses from other product sales + changes in sales channel choices

\[
- \left(1 - F_{\kappa}([\hat{\kappa}_{it}(0|c_{*lbt})] \right) \sum_{k \in J_t \atop l' \neq l} s_{b(i)klt}(0|c_{*lbt}) W_{b(i)klt}(c_{lbt})
\]

\(\geq 0 \).

Equation (19) shows that for the broker’s participation constraint to be non-binding, commission payments need to be above a certain threshold, \(c_{lbt} \). Therefore, for a broker and a lender to begin negotiations, the maximum commission a lender is willing to pay must be higher than the minimum commission a broker is willing to accept, that is, \(\bar{c}_{lbt} > c_{lbt} \). A lender’s decision to reach an agreement with a broker is affected by downstream competition between brokerage services and the lender’s in-house distribution channels (e.g., branches). A lender may decide to exclude brokers operating in areas where it has an extensive branch network and his outside option (i.e., direct sales) is much higher. On the other hand, a broker may decide to exclude a lender from her network if the profits she gets from selling other products is sufficiently large. The intuition is that when jointly agreeing on a mortgage with households, brokers need to split the surplus as given by equation 5. When distortion parameter \(\theta_b \) is very low (e.g., the broker has limited bargaining power), the household’s utility dominates the broker’s utility, and mortgage choices for the pair are driven by households’ preferences. However, if brokers refrain from including low-commission lenders in their networks, households’ will be forced to choose among choice sets that are beneficial for brokers. The downside is that households will anticipate the more restricted network and may decide to switch to direct sales instead. The latter effect may be small for some lenders, causing brokers to exclude them from their network if their commission is not sufficiently high.

Given each pair’s maximization problem, three outcomes are possible in terms of agreement and optimal commission. First, if \(\bar{c}_{lbt} < c_{lbt} \), no agreement is reached and the
broker is not allowed to originate mortgages with that lender. Second, if, on the other hand, \(\bar{c}_{lbt} \geq c_{lbt} \) and both participation constraints are not binding, each pair chooses an optimal commission rate, \(c^*_{lbt} \), such that the first derivatives with respect to commission payments are equal to zero, \(\partial \log (NP^b_l) / \partial c_{lbt} = 0 \). Finally, if at least one of the participation constraints is binding, the optimal commission is either \(\bar{c}_{lbt} \) or \(c_{lbt} \).

5 Estimation and Identification

5.1 Demand

5.1.1 Household Preference Parameters

I assume demand taste shocks, \(\varepsilon_{ijlm} \) and \(\epsilon_{b(i)jlm} \), in the indirect utilities are identically and independently distributed across households, products, and lenders with a type I extreme value distribution. Conditional on going through the direct channel, the probability of household \(i \) choosing product \(j \) from lender \(l \) in market \(t \) is:

\[
s_{ijlt} = \Pr(\text{jl chosen} | C_{it}) = \frac{\exp(\bar{V}_{ijlt})}{\sum_{ks \in C_{it}} \exp(\bar{V}_{ikst})}, \tag{20}
\]

where \(\bar{V}_{ijlt} \) is household indirect utility in equation 3 excluding the error term \(\varepsilon_{ijlt} \). If household \(i \) hires broker \(b \), the probability of choosing product \(j \) from lender \(l \) in market \(t \) is:

\[
s_{b(i)jlt} = \Pr(\text{jl chosen} | C_{b(i)t}) = \frac{\exp(\bar{V}_{b(i)jlt})}{\sum_{ks \in C_{b(i)t}} \exp(\bar{V}_{b(i)kst})}, \tag{21}
\]

where \(\bar{V}_{b(i)jlt} \) is broker-household indirect utility as defined in equation 5 without the error term \(\epsilon_{b(i)jlt} \). Given these choice probabilities, the log-likelihood for direct and intermediated channels is:

\[
ln(L_i|\eta_i, \delta^{G}_{jlt}, \delta_{lbt}) = \sum_{j \in C} \mathbb{1}_{ijlt}^D \ln(s_{ijlt}) + \sum_{b \in B_t} \mathbb{1}^b_i \ln(s_{b(i)jlt}), \tag{22}
\]

where \(\eta_i \) is a vector of all demand parameters, \(\mathbb{1}_{ijlt} \) is a dummy equal to one if household \(i \) buys product \(j \) from lender \(l \) in market \(t \), \(\mathbb{1}^D_i \) is a dummy equal to one if household \(i \) chooses the direct channel, and \(\mathbb{1}^b_i \) is a dummy equal to one if household \(i \) hires broker \(b \). I include product-lender-market-group fixed effects, \(\delta^{G}_{jlt} \), to account for product mean utility in an income-region group \((G) \), that is, the part of utility obtained from product \(j \) from lender \(l \) in market \(t \) that is common across all households \(i \) in group \(G \). I also add broker-lender-market fixed effects, \(\delta_{lbt} \), to control for broker-lender mean utility, that is, the part of the utility
obtained from originating a product with lender l that is common across all households going to broker b in market t.

Identification.— One of the limitations of having transaction data is that households’ choice sets and lenders’ affordability criteria are unobserved. To identify preference parameters, I create a household-specific counterfactual choice set depending on their observable characteristics. First, I divide households into groups based on geographical regions and year-quarter. I assume households in each group can access all products sold in that region during that quarter, but not those sold in other regions or other quarters. The geographical restriction affects mostly building societies and smaller banks because they often have limited coverage. The time restriction is needed to account for the entry and exit of products. Next, I consider all households that purchased a given product and select those with the lowest credit score, the highest loan-to-income ratio, and the highest age. I carry out this process for every product. I then assume a household will not qualify for that product if (1) it has a credit score lower than the cut-off value, (2) a loan-to-income ratio larger than the cut-off value, or (3) is older than the cut-off value. The rationale for these restrictions is based on lenders’ most common set of affordability criteria, which rely on credit scores, loan-to-income, and age. Finally, for the intermediated sales channel, I further restrict the choice set of the household-broker pair to products sold by lenders with whom the broker has reached an agreement in the bargaining stage.

After constructing a counterfactual choice set for each household, I proceed to estimate demand parameters in the log-likelihood described in equation 22. To identify household preferences over product characteristics (α, β), I use a two-step instrumental variables approach to explicitly account for possible correlations between interest rates (r_{jlt}) and unobservable product characteristics (ξ_{jlt}). I use a similar two-step approach to identify broker preferences over commission payments and broker downstream market power (θ_b). This approach allows me to account for correlations between commissions (c_{lb}) and unobservable broker-lender relationships varying over time (ζ_{blt}). In a first step, I maximize the log-likelihood and recover estimates for household preferences over branches (λ), broker preferences over product characteristics other than commissions (γ_2), product-lender-market-group fixed effects (δ_{jlt}^G), and broker-lender-market fixed effects (δ_{ltb}). I can separately identify broker and household preferences as long as household-preference parameters for product characteristics remain constant across sales channels. I can identify the coefficient on bank branches as long as households value nearby branches only when originating their mortgage directly through lenders. That is, for households going through brokers, branches do not play a role.

In a second step, I regress the estimated product-lender-market fixed effects ($\hat{\delta}_{jlt}^G$) on
interest rates and product characteristics:

\[
\hat{\delta}_{jlt}^G = [\alpha^G r_{jlt} + \psi^G_{1} \text{High LTV} + \psi^G_{2} \text{Two-Year Fixed}] \times 1[i = \text{Income-Region } G] \\
+ \text{Lender FE} + \text{Market FE} + \varepsilon_{ijlt},
\]

where High LTV is a dummy equal to one if LTV is 85% or higher. Because interest rates are potentially correlated with unobservable product characteristics included in the error term, I use an instrumental variable approach in order to get consistent estimates of demand parameters \(\alpha^G\), \(\psi^G_{1}\), and \(\psi^G_{2}\). In particular, I use two cost shifters as instruments for the interest rate. I use risk weights associated with capital requirements, which vary across time, lender, and loan-to-value bands. I also use the rate for euro interest rate swaps for two, three, and five years. Swap rates vary across time and type, and are a hedging instrument lenders use when selling mortgages with fixed periods of two, three, and five years, respectively. Both instruments allow me to exploit variation across markets, lenders and products. For identification, I am assuming these instruments are uncorrelated with unobserved product characteristics once I control for lender and market fixed effects.

Moreover, I regress the estimated broker-lender-market fixed effects \(\hat{\delta}_{lbm}\) on commissions and broker dummies:

\[
\delta_{lb} = \sum_b 1[i = \text{Broker } b] \left(\frac{\theta_b}{1 - \theta_b} \gamma_1 c_{lb} \right) + \mu_{lb} + \phi_{lt} + \nu_{lb} + \varepsilon_{lb},
\]

where \(1[i = \text{Broker } b]\) is a dummy equal to one for broker \(b\). I normalize \(\gamma_1\) to one, and absorb a rich set of fixed effects captured by \(\mu_{lb}\), \(\phi_{lt}\), and \(\nu_{lb}\). As a robustness check and in order to control for possible correlations between the broker-lender-market commissions and unobservable (to the econometrician) broker-lender-market relationships that might affect brokers’ choices, I use supply-shifters instrumental variables. I use as cost shifters for lenders and brokers the business rates (taxes) in counties where the lender has its headquarters and the broker has its principal place of business. This instrument exploits variation across markets, lenders, and brokers. For identification, I assume these instruments are uncorrelated with unobserved time-varying broker and lender characteristics once I control for lender, broker, and market fixed effects.

5.1.2 Household Search Cost Distribution

I assign households to groups, \(G\), based on their income quartile \(q\), region \(g\), and market \(t\). I assume a household \(i\) in group \(G\) knows the average ex-ante expected maximum utility that households in the same group get from each sales channel.\(^8\) These ex-ante expected

\(^8\)Recent consumer surveys at the Financial Conduct Authority have shown that 67% of borrowers only consulted one broker when originating their mortgage. In another survey for UK financial products, Finney
utilities can be computed using choice probabilities as given by equation 4 for both direct and intermediated sales. Let \(\hat{\kappa}_G \) be the search cost that makes household \(i \) in group \(G \) indifferent between both sales channels. This indifference cut-off value is:

\[
\left(\sum_{i \in G} E[\max_{jl} V_{ijlt}(\eta) | \text{Direct}] \right) - \hat{\kappa}_G = \sum_{b \in G} \pi_{b(G)t} \sum_{i \in G} \left(E[\max_{jl} V_{b(i)jlt}(\eta) | b] - \alpha_G f_{Gb} \right),
\]

where \(\eta \) is a vector of all preferences parameters estimated in the mortgage choice problem; \(E[\max_{jl} V_{ijlt}(\eta) | \text{Direct}] \) and \(E[\max_{jl} V_{b(i)jlt}(\eta) | b] \) are the ex-ante expected household utilities of household \(i \) in \(I_G \) going directly to the lender and hiring broker \(b \), respectively; \(\pi_{b(G)t} \) is the probability that a household in group \(G \) is matched to broker \(b \); and \(f_{Gb} \) is the broker fee paid by households in group \(G \) when hiring broker \(b \). I multiply the fee by the price coefficient, \(\alpha_G \), in equation 23 to transform money into utils and make the fee comparable to the expected utilities. This indifference condition in equation 25 implies that, if household \(i \) in group \(G \) has a search-cost draw \(\kappa_i \) that is greater than \(\hat{\kappa}_G \), it will choose to hire a broker. Similarly, if it has a search-cost draw \(\kappa_i \) smaller than \(\hat{\kappa}_G \), it will opt for the direct sales channel and search for a mortgage across lenders’ in-house distribution channels.

To estimate the mean and standard deviation of the search cost distribution across subgroups, I use equation 25 and the preference parameters estimated in the previous subsection. First, it is necessary to compute for each household the average expected ex-ante utility that it will receive from each sales channel. For the direct channel, following Small & Rosen (1981), household \(i \) will get an ex-ante expected maximum utility equal to:

\[
E[\max_{jl} V_{ijlt}(\hat{\eta}) | \text{Direct}] = \ln \left[\sum_{k \in J_t} \exp \left(V_{ijlt}(\hat{\eta}, \text{Direct}) \right) \right],
\]

where \(\hat{\eta} \) is the vector of demand-preference parameters estimated in the previous subsection.

For broker sales, each broker-household pair maximizes the joint utility as defined by equation 5. Therefore, I need to split the ex-ante expected maximum utility of the pair into that of the broker and that of the household. To do so, I first simulate draws from the distribution of the household’s error term for each product assuming a type I extreme value distribution. For each draw, I compute the utility of the broker-household pair for each

\& Kempson (2008) find most consumers only consulted at most one source of information before making a purchase. Chater et al. (2010) reach a similar conclusion after studying several European countries. Moreover, the FCA’s Financial Lives Survey 2017 indicates 23% of borrowers chose their broker because a real estate agent recommended it and 29% because it was recommended by a friend or relative. This indicates that this referral is influential for some consumers. Given households’ limited search for a broker and the importance of referrals, the assumption that households only know the average utility similar households got when choosing the brokerage channel seems reasonable.
product in the pair’s choice set and select the product that gives the pair the highest utility. I then compute the household’s utility for that choice. Finally, I take the average of the maximum household utilities across draws, which will give me a numerical approximation of the household’s expected ex-ante utility from that broker.

After computing all ex-ante expected maximum utilities for all channels and all income-region groups, I can rewrite equation 25 as:

\[\hat{U}_{Direct}^{G} - \hat{\kappa}_{G} = \hat{U}_{Broker}^{G}, \] (27)

where \(\hat{U}_{Direct}^{G} \) is the estimated expected maximum indirect utility of going direct, and \(\hat{U}_{Broker}^{G} \) is estimated average expected net maximum indirect utility of choosing the broker channel (after subtracting broker fees and multiplying by the probability of being paired with that particular broker). The probability of household \(i \) choosing the direct channel will depend on whether its search cost \(\kappa_{i} \) is smaller than \(\hat{\kappa}_{i} \):

\[P_{i}^{Direct} = \text{Prob}(\kappa_{i} < \hat{\kappa}_{G}) = \int 1(\kappa_{i} < \hat{\kappa}_{G}) f(\kappa) d\kappa. \] (28)

Likewise, the probability that household \(i \) will choose the broker channel is:

\[P_{i}^{Broker} = \text{Prob}(\kappa_{i} > \hat{\kappa}_{G}) = \int 1(\kappa_{i} > \hat{\kappa}_{G}) f(\kappa) d\kappa. \] (29)

I assume that search costs \(\kappa \) follow a normal distribution with mean \(\mu \) and standard deviation \(\sigma \). Therefore, the log-likelihood function is:

\[
\ln [L(\mu, \sigma^{2}; y_i, \hat{\kappa}_{G})] = \sum_{i} \ln \left(\left[F(\hat{\kappa}_{G} | \mu, \sigma^{2}) \right]^{y_i} \left[1 - F(\hat{\kappa}_{G} | \mu, \sigma^{2}) \right]^{1-y_i} \right),
\] (30)

where \(F(\cdot) \) is the cdf of \(\kappa \), and \(y_i \) is a dummy variable equal to one if the household chose to go directly to the lender, and zero if it hired a broker. The value \(\hat{\kappa}_{i} \) is determined by equation 27.

Identification.— Identification of the search cost distribution parameters, \(\mu \) and \(\sigma \), comes from variation in consumer choices and their expected utilities.

5.2 Supply

5.2.1 Lender Marginal Costs

The estimation of lenders’ marginal costs is based on the optimal pricing formula derived in Section 4.3.1. Using the estimated preference parameters and cut-off search costs, I can back out from equation 12 the average effective marginal costs (A\(MC_{jlt} \)), which are a weighted
average of the marginal costs from direct and intermediated sales. I then assume that marginal costs from intermediated sales are a function of product characteristics, whereas marginal costs from direct sales are the same as those of intermediated sales plus a premium. I regress the estimated average marginal costs on product characteristics (weighted) and normalized commission rates. I obtain a two-step estimator of the cost parameters at the product level with the following linear specification:

\[
\begin{align*}
AMC_{jt} &= \varphi_1 X_{jt} \rho^D_{jt} + \varphi_2 X_{jt} \rho^B_{jt} + \varphi_3 \sum_{b=1}^{B} \frac{c_{lb}}{t_j} \pi_{blt} \rho^B_{jt} + \tau_t + \varepsilon_{jt}, \\
&= (31)
\end{align*}
\]

where \(AMC_{jt} \) is the average marginal costs; \(X_{jt} \) are the same product characteristics that affect borrower demand (loan-to-value band, initial period and lender); \(\rho^D_{jt} \) and \(\rho^B_{jt} \) are weights defined in equations 13 and 14 respectively; \(c_{lb} \) are commission payments; \(t_j \) is the initial period; \(\tau_t \) are market fixed effects; and \(\varepsilon_{jt} \) is a structural error capturing unobservable variables that might affect average marginal costs (e.g., screening, advertising). This two-step estimation allows be to differentiate between the marginal costs of direct and intermediated sales.

Identification.— I recover effective average marginal costs by inverting lenders’ optimal first-order conditions. Then, to separately identify direct and intermediated marginal costs, I exploit variation across product choice probabilities conditional on sales channels and changes in household choices of direct versus intermediated channels. I also require that, for intermediated sales, the lender has to pay an additional commission to brokers. Finally, to address any concern about endogeneity in \(\rho^D_{jt} \) and \(\rho^B_{jt} \) due to omitted variable bias, I use product characteristics and \(\rho \) values of other lenders as an instrument for a lender’s own product characteristics and \(\rho \) values.

5.2.2 Broker-Lender Bargaining Parameters

The bargaining parameters depend on the protocol of the bargaining game and the gains from trade of both lenders and brokers, as defined in section 4.3.2. Given estimates for demand preferences, household search costs, and marginal costs, I can compute both agreement and disagreement payoffs as described in the model for all broker-lender pairs for which I observe an agreement in equilibrium. I choose the values of \(\beta_{bl} \) that minimize the distance between observed equilibrium commissions and the estimated optimal commissions from the model, as determined by the first-order conditions in the bargaining game.

Identification.— For each broker-lender pair, I invert the first-order conditions in each pair’s bargaining problem. At this stage, the only unknowns are the bargaining parameters.
To identify them separately from the outside options, I exploit geographical and time variation in lenders’ branch networks. These sources of variation will affect lenders’ and brokers’ outside options, but not their bargaining parameters. Moreover, I use the timing of negotiations. Demand realizations and changes in branch networks happen more frequently than commission renegotiations. This provides an additional source of variation to identify bargaining parameters separately from changes in outside options. Finally, I also use cross-sectional variation on commission payments across lenders and brokers, as well as time variation (commissions are renegotiated at least once during my sample period).

6 Estimation Results

6.1 Demand Parameters: Preferences and Search Costs

For estimating the demand parameters described in subsection 5.1, I use a 25% random sample as a training sample, and then use the remaining 75% of the data for cross-validation. Panel A in Table 5 reports the estimated demand parameters of the households’ mortgage choice problem for the 25% random sample.

The average point estimate of the coefficient on interest rates across all income-region groups is significant and equal to -0.91, implying borrowers dislike more expensive mortgages. The corresponding average own-product demand elasticity is equal to 3.34, and the cross-product demand elasticity equals 0.02. That is, on average, a 1% increase in the interest rate decreases the market share of the mortgage by 3%, whereas the shares of other mortgages increase by 0.02%. I also find that first-time-buyers value more mortgages with higher leverage (ψ_1) and longer initial fixed periods (ψ_2). This type of borrower is often credit constrained, and a higher loan-to-value allows for lower down-payments. Longer fixed periods minimize switching costs involved in refinancing, as well as interest rate risk. Borrowers also value the fraction of branches in nearby postcodes when purchasing the mortgage directly from lenders. This effect disappears when borrowers originate the mortgage through a broker.

Panel A in Table 5 also presents estimates for brokers’ distortions to households’ choices (brokers’ downstream market power). The average distortion is equal to 0.37, as captured by parameter θ. Figure 6 shows the distribution of θ across broker companies, with values ranging between 0.28 and 0.45. Although brokers are heterogeneous in their influence on borrowers, I can reject the null hypothesis of benevolent brokers (θ equal to zero) at a 5% significance level for all broker companies. In addition, brokers seem to have a preference for products with higher leverage ($\bar{\gamma}_{21}$) and shorter initial fixed periods ($\bar{\gamma}_{22}$). This preference is not surprising given the financial incentives brokers face. As already described in section 3, brokers get fees and commission payments every time households remortgage. Thus, making this event happen as often as possible is in their best interest. Considering that
Table 5: Demand Estimates

PANEL A: Mortgage Choice Parameters

<table>
<thead>
<tr>
<th></th>
<th>Interest Rate Borrower (α)</th>
<th>High LTV Borrower (ψ₁)</th>
<th>2-Year Fixed Borrower (ψ₂)</th>
<th>Branches Direct (λ)</th>
<th>Commission Broker (θ)</th>
<th>High LTV Broker (γ₁)</th>
<th>2-Year Fixed Broker (γ₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>-0.91</td>
<td>0.45</td>
<td>-0.21</td>
<td>0.33</td>
<td>0.37</td>
<td>0.14</td>
<td>0.27</td>
</tr>
<tr>
<td>SE</td>
<td>0.39</td>
<td>0.10</td>
<td>0.07</td>
<td>0.09</td>
<td>0.11</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>N Likelihood</td>
<td>7,493,244</td>
<td>7,493,244</td>
<td>7,493,244</td>
<td>7,493,244</td>
<td>7,493,244</td>
<td>7,493,244</td>
<td></td>
</tr>
<tr>
<td>N Borrowers</td>
<td>91,137</td>
<td>91,137</td>
<td>91,137</td>
<td>91,137</td>
<td>91,137</td>
<td>91,137</td>
<td></td>
</tr>
<tr>
<td>N 2nd Stage</td>
<td>5,208</td>
<td>5,208</td>
<td>5,208</td>
<td>-</td>
<td>483</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lender FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Market FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Broker FE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>F-stat</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>-</td>
<td>26</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

PANEL B: Sales Channel Choice Parameters

<table>
<thead>
<tr>
<th></th>
<th>All Borrowers</th>
<th>London Regions</th>
<th>Q1 Income</th>
<th>Q2 Income</th>
<th>Q3 Income</th>
<th>Q4 Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEARCH COSTS</td>
<td>Mean (µ)</td>
<td>3.3</td>
<td>2.9</td>
<td>4.1</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Stand. Dev. (σ)</td>
<td>0.5</td>
<td>0.4</td>
<td>0.7</td>
<td>0.8</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Note: Panel A shows the structural demand estimates of the logit model for demand for mortgage products. The model is estimated for a 25% random sample. Standard errors are computed by bootstrapping. The F-stat is the F statistics for the excluded instrument in the second stage instrumental variable regressions for both product-market and broker-lender-market estimated fixed effects. N likelihood is the total number of observations in the first stage (borrower-product pairs). N second stage is the number of observations in the second stages. N borrowers is the total number of borrowers in the 25% random sample. Panel B presents the estimates for the search cost distributions. I use the entire sample for this part of the estimation.
Figure 6: Broker Market Power Estimates

Note: The graph shows estimates of distortion parameter θ_b for the largest 20 broker companies in the market and two categories of small and medium brokers. These parameters are obtained after regressing the estimated broker-lender-market fixed effects on commissions interacted with broker dummies. I also control for market, broker and lender fixed effects. To account for endogeneity concerns, I use supply-side, cost shifters as instrumental variable for commissions. Standard errors are computed by block-bootstrapping.

the commission payment is a percentage of the loan amount, brokers can nudge households towards higher loan-to-value products. Results also show evidence of lender geographical market power. The estimate for household preferences for bank branches (λ) is positive and significant. Moreover, it is 30% of the size of the average estimate for interest rates, implying households going directly to lenders have a strong preference for nearby branches.

In terms of the fit of the model, Figure B.1 compares the distribution of estimated and observed market shares for both training and cross-validation samples. The model fits the out-of-sample data quite well, both in terms of mean and variance. The fit is also good when accounting for product characteristics, namely, lender, initial period, and loan-to-value band. Figure B.2 plots estimated and observed market shares across these dimensions. The main limitation is that the model over-predicts the share of shorter initial period mortgages and has a higher variance for products with loan-to-value bands above 85%.

Panel B in Table 5 presents estimates for the mean and standard deviation of borrowers’
Table 6: Marginal Costs

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Direct Sales</th>
<th>Intermediated Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>1.82</td>
<td>1.93</td>
<td>1.79</td>
</tr>
<tr>
<td>Lender Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Six</td>
<td>1.80</td>
<td>1.95</td>
<td>1.71</td>
</tr>
<tr>
<td>Challengers</td>
<td>1.84</td>
<td>1.87</td>
<td>1.83</td>
</tr>
<tr>
<td>Small Banks</td>
<td>2.31</td>
<td>2.16</td>
<td>2.40</td>
</tr>
<tr>
<td>Building Societies</td>
<td>1.87</td>
<td>1.78</td>
<td>1.93</td>
</tr>
<tr>
<td>Initial Period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Years</td>
<td>1.73</td>
<td>1.75</td>
<td>1.73</td>
</tr>
<tr>
<td>3-Years</td>
<td>1.94</td>
<td>2.02</td>
<td>1.89</td>
</tr>
<tr>
<td>5-Years</td>
<td>1.98</td>
<td>2.10</td>
<td>1.84</td>
</tr>
<tr>
<td>LTV Band</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTV ≤ 80</td>
<td>1.60</td>
<td>1.79</td>
<td>1.50</td>
</tr>
<tr>
<td>LTV > 80</td>
<td>2.03</td>
<td>2.04</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Note: Marginal costs are expressed in percentage points and computed for direct and intermediated sales. I report total average marginal costs taking into account direct and intermediated sales for each product in each time period. I also report marginal costs by different product characteristics: lender, initial period and loan-to-value band.

search cost distributions across income-region groups, as described in section 5.1.2. I use the entire sample to estimate these parameters. I find the average search cost for all first-time-buyers is equal to 3.3, with a variance of 0.5. Panel A in Figure C.1 shows how borrowers in London have a lower average search cost than those in other regions in the UK. Similarly, Panel B in Figure C.1 shows that average search costs increase with income, while the variance decreases.

6.2 Supply Parameters: Marginal Costs and Bargaining

The first column of Table 6 presents average estimates for marginal costs. The average marginal cost is 1.82 percentage points. Small banks have higher average marginal costs, resulting partly from higher capital requirements (Benetton 2018). Mortgages with longer initial deals and higher loan-to-values are also more expensive on average. The second and third columns of Table 6 differentiate between average marginal costs for direct and intermediated sales, with intermediated sales being, on average, 7% less costly to originate.
Table 7: Mark-ups

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Direct Sales</th>
<th>Intermediated Sales (Pre-Commission)</th>
<th>Intermediated Sales (Post-Commission)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>22%</td>
<td>28%</td>
<td>32%</td>
<td>18%</td>
</tr>
<tr>
<td>Lender Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Six</td>
<td>22%</td>
<td>26%</td>
<td>36%</td>
<td>20%</td>
</tr>
<tr>
<td>Challengers</td>
<td>19%</td>
<td>30%</td>
<td>33%</td>
<td>17%</td>
</tr>
<tr>
<td>Small Banks</td>
<td>13%</td>
<td>27%</td>
<td>20%</td>
<td>7%</td>
</tr>
<tr>
<td>Building Societies</td>
<td>24%</td>
<td>36%</td>
<td>31%</td>
<td>16%</td>
</tr>
<tr>
<td>Initial Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Years</td>
<td>19%</td>
<td>29%</td>
<td>31%</td>
<td>15%</td>
</tr>
<tr>
<td>3-Years</td>
<td>24%</td>
<td>28%</td>
<td>34%</td>
<td>19%</td>
</tr>
<tr>
<td>5-Years</td>
<td>25%</td>
<td>27%</td>
<td>37%</td>
<td>23%</td>
</tr>
<tr>
<td>LTV Band</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTV ≤ 80</td>
<td>23%</td>
<td>26%</td>
<td>38%</td>
<td>21%</td>
</tr>
<tr>
<td>LTV >80</td>
<td>17%</td>
<td>20%</td>
<td>20%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Note: Mark-ups are expressed as a percentage of the interest rate. I report average mark-ups for all products and by different product characteristics: lender, initial period and loan-to-value band. I also differentiate between direct and intermediated sales mark-up. For the latter, I consider separately mark-ups before and after commission payments.

than direct sales. Figure D.1 plots marginal cost distributions for both origination channels, illustrating the lower mean and higher variance of broker sales’ marginal costs.

This differential in marginal costs across sales channels is higher for the Big Six, for whom intermediated sales are 12% cheaper. Challenger banks face similar marginal costs, regardless of sales channel, whereas both small banks and building societies find it more costly to originate mortgages through intermediaries rather than through in-house distribution channels. This heterogeneity can be partly driven by the Big Six having intermediary-only online platforms that facilitate the application process and take advantage of economies of scale, which can ultimately reduce the cost of originations via brokers, for example, through quicker income verification. Intermediated sales also have a lower marginal cost for low loan-to-value products.

Given marginal costs, I compute average mark-ups and find average mark-up is 22%, which
Table 8: Lender Bargaining Parameters

<table>
<thead>
<tr>
<th></th>
<th>Large Brokers</th>
<th>Small Brokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Six</td>
<td>0.72</td>
<td>0.41</td>
</tr>
<tr>
<td>Challengers</td>
<td>0.28</td>
<td>0.40</td>
</tr>
<tr>
<td>Building Societies</td>
<td>0.61</td>
<td>0.47</td>
</tr>
<tr>
<td>Small Banks</td>
<td>0.19</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Note: This table reports estimated bargaining parameters for lenders versus large and small broker companies. Larger values of the bargaining parameters indicate relatively more bargaining power for lenders.

is close to the range that other papers studying the UK mortgage market have reported (see, e.g., Benetton 2018). Table 7 shows the existing variation in mark-ups across lender types and other product characteristics. Most importantly, once I differentiate between mark-ups for direct and intermediated sales (accounting for commission payments), intermediated sales are estimated to be 37% less profitable for lenders than their in-house direct sales. This finding holds for all lenders and all product types, implying that brokers have some market power when negotiating with lenders and are able to extract surplus from lenders given borrowers’ preferences for the brokerage channel.

Finally, given demand and cost estimates, Table 8 reports my estimates for bargaining parameters, as described in section 5.2.2. Higher values indicate relatively more bargaining power for lenders. Bargaining parameters are heterogeneous and range between 0.19 and 0.72. These values reject the hypothesis of take-it-or-leave-it offers, because bargaining parameters are neither one, which would imply lenders choose mutually agreeable commissions that make brokers’ participation constraints binding, nor zero, which would imply brokers offer commissions that make lenders’ participation constraints binding. I find that large brokers have a 50% lower bargaining power when facing the Big Six and building societies than when negotiating with challengers and small banks. Small brokers, on the other hand, are able to equally split the surplus when negotiating with all types of lenders. Among lenders, the Big Six have a bargaining power of 0.72 when dealing with large brokers, but that situation is reversed when negotiating with small brokers. The same happens to building societies. Challengers, however, only have a bargaining power of 0.28 when facing large brokers, but are able to extract 50% of the surplus against small brokers. Similarly, small banks have a higher bargaining parameter in negotiations with small brokers.
7 Counterfactual Scenarios

In this section, I use the estimates from the model to simulate two sets of counterfactual scenarios. The first set of counterfactual policies restricts the channels through which households can originate a mortgage. First, I consider a policy banning broker services in this market. Next, I implement a ban on direct sales, that is, I make brokers’ advice mandatory. In the second set of policy counterfactuals, I consider equilibrium effects from restricting commission payments from a complete ban to different caps. In all simulations, I make assumptions consistent with a short-run analysis. I assume lenders do not change their available products and that no entry or exit occur in the market. Lenders also do not modify their branch network. I also impose that preferences remain invariant and that lenders’ marginal costs are not affected by the policy change. I recognize that some of the assumptions underlying the results in the simulations are strong, but they are necessary to produce policy counterfactuals in this setting.

7.1 Restrictions on Broker Services and Direct Sales

First, I simulate an equilibrium without any brokerage services. Column (1) in Table 9 reports estimates of a counterfactual in which households can only originate their mortgages via lenders’ in-house distribution channels. In this scenario, competition decreases with the Herfindahl-Hirschman Index increasing by 35%. Prices go up by almost 25%, and lender profits increase by 12% (even more for the large lenders). Household search costs increase by more than 150%. Larger search costs and higher prices result in consumer surplus decreasing by 51%. This large fall in consumer welfare suggests that the positive roles of brokers (lower search costs and more upstream competition) dominate the negative ones, and households are better off having these intermediaries in the market despite their distorted incentives.

Next, I consider an equilibrium with mandatory brokers’ advices (i.e., without any direct sales). Column (2) in Table 9 shows estimates of a counterfactual scenario banning direct sales and making expert advice from brokers mandatory. In this simulation, lenders with extensive branch networks lose their local market power (due to household preferences for nearby branches). Competition increases with the Herfindahl-Hirschman Index falling by 27% and the share of the Big Six decreasing by 17%. Moreover, marginal costs go down by 12%, because now all sales are done via brokers (which are more efficient). However, brokers are able to extract most of this gain in efficiency by increasing their commission rates by 42%. This change is driven by a drastic fall in outside options for the Big Six. Overall, lender profits decrease by 20% and prices increase by 9%. The net effect on consumer surplus is a decrease of 6%.

To generate estimates in Column (2), I make two assumptions that might change in the long-run and could affect the overall effect on consumer surplus. First, I assume no entry in
Table 9: Counterfactual Restrictions on Commission Payments

<table>
<thead>
<tr>
<th>Market Structure</th>
<th>Ban on Brokerage</th>
<th>Ban on Direct Sales</th>
<th>Ban on Commissions</th>
<th>Cap at 0.4%</th>
<th>Fixed at 0.4%</th>
<th>Fixed at 0.7%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%Δ</td>
<td>%Δ</td>
<td>%Δ</td>
<td>%Δ</td>
<td>%Δ</td>
<td>%Δ</td>
</tr>
<tr>
<td>HHI</td>
<td>35%</td>
<td>-27%</td>
<td>21%</td>
<td>5%</td>
<td>-3%</td>
<td>12%</td>
</tr>
<tr>
<td>Share Big Six</td>
<td>19%</td>
<td>-17%</td>
<td>12%</td>
<td>3%</td>
<td>-2%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Pass-Through

<table>
<thead>
<tr>
<th></th>
<th>Prices</th>
<th>Marginal Cost</th>
<th>Lender Profits</th>
<th>Commission Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%Δ</td>
<td>%Δ</td>
<td>%Δ</td>
<td>%Δ</td>
</tr>
<tr>
<td>Prices</td>
<td>24%</td>
<td>9%</td>
<td>11%</td>
<td>-5%</td>
</tr>
<tr>
<td>Marginal Cost</td>
<td>-12%</td>
<td>9%</td>
<td>-1%</td>
<td>-4%</td>
</tr>
<tr>
<td>Lender Profits</td>
<td>12%</td>
<td>-20%</td>
<td>7%</td>
<td>0%</td>
</tr>
<tr>
<td>Commission Rates</td>
<td>-100%</td>
<td>-42%</td>
<td>-100%</td>
<td>-35%</td>
</tr>
</tbody>
</table>

Demand

<table>
<thead>
<tr>
<th></th>
<th>Share Direct</th>
<th>Search Costs</th>
<th>Consumer Surplus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%Δ</td>
<td>%Δ</td>
<td>%Δ</td>
</tr>
<tr>
<td>Share Direct</td>
<td>357%</td>
<td>-100%</td>
<td>115%</td>
</tr>
<tr>
<td>Search Costs</td>
<td>156%</td>
<td>-100%</td>
<td>83%</td>
</tr>
<tr>
<td>Consumer Surplus</td>
<td>-51%</td>
<td>-6%</td>
<td>-26%</td>
</tr>
</tbody>
</table>

Note: Column (1) reports estimates of restricting brokerage services, so that all mortgages are originated through lenders’ in-house distribution channels. Column (2) presents estimates of banning direct sales and making broker advice mandatory. Columns (3) and (4) show estimates for policies imposing a ban and a cap on commissions equal to the median commission. Column (5) sets all commissions equal to 0.4%, and Column (6) fixes commissions at 0.7%.

the broker market. Given the increase in broker revenues due to higher commissions, it seems reasonable to expect some entry in this market. More brokers would result in lower commissions for banks and, most likely, lower prices for households. This effect will increase consumer surplus. The second assumption is that broker fees to households remain constant. However, if brokers also increased their fees to households, consumer surplus would decrease. The magnitude of this additional fall will depend on the level of competition among brokers, which I do not model. Thus, Column (2) is a lower bound on the losses.

Overall, banning either broker sales or direct sales will decrease consumer welfare in the short-run. These results suggest that consumers are better off with the baseline model in which there is competition among brokers and branches.

7.2 Restrictions on Commission Rates

Reduced-form evidence in Section 3 suggests brokers react to supply-side incentives. Estimates for brokers’ distortion parameters θ_b in Section 6 also reject the hypothesis
of benevolent brokers, indicating brokers’ choices respond to commission payments. To align households’ and brokers’ incentives, regulators have imposed restrictions on upstream payments to intermediaries. To address the effects of such policies, I use the estimated model to explore the equilibrium impact of changes in commission rates.

First, I consider equilibrium effects of imposing a ban on commission payments between brokers and lenders. In this counterfactual, I assume broker fees to households’ increase such that the average per-sale profit each broker company receives is the same as in the estimated baseline model.9 In Appendix D, I run the same policy counterfactual but make alternative assumptions on broker pass-through. I obtain qualitatively similar results for different increases in broker downstream fees.

Column (3) in Table 9 shows results when implementing a ban on commissions given the assumptions mentioned above. This policy proves to be detrimental for consumers. Market concentration and prices go up, as well as marginal costs and search costs. Consumer surplus falls by more than 25%, and profits for the Big Six increase by more than 27%. To illustrate the mechanism that seems to dominate in this equilibrium, consider a household with large search costs. In the baseline model, this household chooses the brokerage channel. However, because broker fees to households increase significantly in this counterfactual, this household now decides to originate its mortgage via lenders’ in-house distribution channels. As shown in the estimated model by the coefficient on nearby branches λ, lenders’ with extensive branch networks are able to get a higher market share from households going direct. When setting interest rates, the Big Six anticipate this increase in direct sales and increase prices, resulting in lower consumer surplus. Given the relevance of branches and other in-house distribution channels in the new equilibrium, challenger banks are likely to invest in their own channels in the long-run. In addition, some broker companies could be forced to exit the market given the decrease in their market share as a result of higher household fees. I do not capture these long-run equilibrium effects in my estimates.

An alternative policy to align households’ and brokers’ incentives is to impose a cap on commission payments. I assume this cap to be equal to the average commission in the baseline model (0.4% of the loan amount). This regulation allows brokers to still get some revenue from lenders, and therefore broker fees to households do not increase as much as in the case of a ban. This policy also has implications for the network of broker-lender pairs. For some pairs, their new optimal commission, c_{lt}^*, as defined in Section 4.3.2, is below the cap, c_t^{cap}. For these cases, nothing changes and the link still holds. For other pairs, the cap violates the broker’s participation constraint and the link is broken. Finally, for some pairs, the cap

9I need to make an assumption on broker pass-through since my model does not endogeneize broker fees to households. Since most broker companies in the baseline charge zero fees, it would be unrealistic not to change fees in the counterfactual. Broker companies need to make money, and, if lenders no longer make payments, it seems reasonable to assume household fees will go up.
Figure 7: Consumer Surplus and Maximum Commission Rates

Note: A ban on commissions is equivalent to imposing a cap equal to zero. No restrictions on commissions is equivalent to imposing a (non-binding cap) equal to 0.9%. The y-axis plots consumer surplus as defined in subsection 5.1.2.

could be binding, and the link holds with an equilibrium commission equal to c^cap_i. Column (4) in Table 9 reports estimates for a regulation imposing a cap. Direct sales increase only by 30% and search costs only go up by 13% (both significantly less than in the case of a ban). Prices fall by 5%, and the overall impact on consumer surplus is positive, with an increase of almost 10%. These results are driven because, despite brokers having narrower networks of lenders and household broker fees going up, households that do hire brokers get, on average, a much better deal than in the baseline model.

Figure 7 plots the relationship between consumer surplus and different levels of caps on commissions. This non-monotonic relationship results from a trade-off between broker market power and lender local market power. Households originating their mortgages via brokers face broker market power in the sense that brokers can extract surplus from them (positive values of θ). On the other hand, households going directly to lenders prefer nearby branches. This preference gives lenders local market power, which they can exploit when setting interest rates. A very restrictive cap reduces broker market power at the expense of
increasing lender market power. In the case of a ban, the gains of reducing broker market power do not compensate for the welfare loss of increasing lender market power.

The final set of policy counterfactuals considers cases in which, instead of capping commission payments, the regulator fixes commissions to an homogeneous rate. This policy will have the following equilibrium effects. First, a different set of broker-lender links will break. As in the case of a cap, some agreements with higher rates in the baseline will no longer be in place. Additionally, some links with lower rates in the baseline will also no longer hold. Therefore, broker networks will be significantly narrower than in the baseline. This effect will reduce household payoffs from going to brokers and will lead some households to shift to the direct channel (decreasing lender competition and increasing prices). The second equilibrium effect of this policy is that household and broker incentives are more aligned than in the baseline. Household expected utility of going to the broker goes up and some households will shift to the broker channel. However, it is important to highlight that, even though heterogeneity of commissions across lenders no longer distorts brokers’ advice, brokers still have their own incentives and these do not necessarily matched those of the household. Theoretically, the overall effect of these policies is ambiguous.

Columns (5) and (6) in Table 9 report estimates for regulations fixing commission rates to 0.4% and 0.7%, respectively. Estimates in Column (5) have very similar averages to the baseline with no restrictions. Estimates in Column (6) result in a 11% lower consumer surplus, driven by a larger shift of households into the direct channel. Both policies affect selection into brokers and, consequently, which households are better and worse off because of the regulation. When commission rates are fixed at 0.7%, broker networks are mostly composed by challenger banks. Therefore, households whose payoffs are larger with these banks are more likely to go to brokers. However, these households also have, on average, lower search costs. In equilibrium, households with larger search costs but preferences for the Big Six go direct, while households with lower search costs but preferences for products by the challenger banks go to brokers. The Big Six are able to increase their prices and overall consumer surplus decreases by 11%. In the case where commission rates are set to 0.4%, the two equilibrium effects mentioned above counterbalance each other and the overall impact on consumer surplus is almost analogous to the baseline.

8 Conclusion

Regulations restricting upstream payments for expert advisors have been at the center of academic and policy debate in the last decades. An ongoing effort seeks to better understand the effectiveness of such policies and the supply and demand channels through which they operate. This paper contributes to this debate by focusing on the UK mortgage market, where brokers play a key role in improving upstream competition among lenders and reducing
household search costs. In this market, restrictions on commission payments have a positive effect on consumer surplus by aligning households' and brokers' incentives. However, they also have a negative impact on consumer welfare by increasing downstream fees and making more consumers go directly to lenders. The decrease in demand for expert services increases the market power of lenders with extensive branch networks. As restrictions become more severe, the increase in prices due to less competition upstream dominates the gains from reducing the agency problem between households and brokers. Overall, whenever restricting financial relationships between intermediaries and upstream firms, considering the supply-side equilibrium effects such policies will unravel is vital.

References

Appendix A Facts: Additional Material

Figure A.1: Explained variation in mortgage pricing

Note: the chart reports the adjusted R^2 of regressions of household level interest rates and fees on a set of dummy variables. First row includes only dummies for the product (interaction of lender, maximum loan-to-value band and initial fixed period). Second row adds fixed effects for each month. Third row adds dummies for lender fees (other price). Fourth row includes dummies for the location of the house and borrower characteristics (income, age, credit score). Finally, fifth row adds a dummy accounting for whether the mortgage was originated by a broker or directly through the lender’s in-house distribution channels.
Figure A.2: Consolidation and Entry in the UK Mortgage Market

PANEL A: Consolidation in the UK banking sector over the last 50 years

PANEL B: Entry in the UK banking sector over the last 10 years (not exhaustive)

Figure A.3: Distribution of Broker Fees Across Borrower Types

Note: Broker fees are expressed in pounds. Internal remortgagors are borrowers refinancing with the same lender, while external remortgagors are borrowers refinancing their mortgage with a different lender.
Figure A.4: Distribution of Commissions Across Borrower Types

Note: Commission rates are expressed as a percentage of the total loan balance. Internal remortgagors are borrowers refinancing with the same lender, while external remortgagors are borrowers refinancing their mortgage with a different lender.
Figure A.5: Branch closures and opening at the local authority level.

Note: Percentage change in total branches within a local authority district between December 2014 and January 2017. Data gathered from Experian Goad and Shop*Point datasets.
Panel A: Probability of Getting a 2-Year Mortgage

Panel B: Probability of Getting a High Loan-to-Value Mortgage

Notes: Panel A shows for each sales channel the probability that a first-time-buyer get a two-year mortgage based on its observable characteristics (age, income, credit score, partner, house price, location) and month dummies. Panel B plots the analogous probability for choosing a mortgage with a loan-to-value greater than 85%.
Appendix B Fit: Additional Material

Figure B.1: Model Fit

PANEL A: Training Sample (25% random sample)

PANEL B: Cross-Validation Sample (Out-of-Sample Fit)

Note: The red solid lines are the observed market shares in the data computed as the sum of originations for each product in each market divided by the total number of households. The blue dashed lines represent the estimated market shares from the model calculated as the sum of the individual predicted probabilities. Panel A uses a 25% random sample, while Panel B is based on the remaining 75% that was not used in the estimation.
Note: I compare observed (solid line) and predicted (dash line) market shares across different product characteristics. The upper left panel shows market shares for the Big Six, Building Societies and Challenger Banks. The upper right panel presents them across loan-to-value bands. Finally, the lower panel plots market shares across initial period deals.
Appendix C Estimates: Additional Material

Figure C.1: Search Cost Distributions Across Subpopulations

PANEL A: Geographical Variation

PANEL B: Income Variation
Figure C.2: Marginal Cost Estimates

Note:
Appendix D Counterfactuals: Additional Material

Figure D.1: Alternative Pass-Throughs for Broker Fees

Note: The solid line increases broker fees such that profits per mortgage sale remain the same as in the baseline with no restrictions for each broker. The dashed line sets broker fees equal to the median broker fee in the baseline (conditional on being positive).