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Abstract

Econometric analysis typically focuses on the statistical properties of fixed
estimators and ignores researcher choices. In this article, I approach the analysis
of experimental data as a mechanism-design problem that acknowledges that re-
searchers choose between estimators, sometimes based on the data and often ac-
cording to their own preferences. Specifically, I focus on covariate adjustments,
which can increase the precision of a treatment-effect estimate, but open the
door to bias when researchers engage in specification searches. First, I establish
that unbiasedness is a requirement on the estimation of the average treatment
effect that aligns researchers’ preferences with the minimization of the mean-
squared error relative to the truth and is optimal in a minimax sense. Second, I
provide a constructive characterization of all unbiased treatment-effect estima-
tors as sample-splitting procedures. Third, I show that a researcher restricted
to the class of unbiased estimators of the average treatment effect solves a pre-
diction problem. The equivalence of unbiased estimation and prediction across
sample splits characterizes all admissible procedures in finite samples, leaves
space for beneficial specification searches, and offers an opportunity to leverage
machine learning. As a practical implication, I describe flexible pre-analysis
plans for randomized experiments that achieve efficiency without bias.
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Introduction

There is a tension between flexibility and robustness in empirical work. Consider an
investigator who estimates a treatment effect from experimental data. If the investi-
gator has the freedom to choose a specification that adjusts for control variables, her
choice can improve the precision of the estimate. However, the investigator’s specifi-
cation search may also produce an estimate that reflects a preference for publication
or ideology instead of a more precise guess of the truth.1 To solve this problem,
we sometimes tie the investigator’s hands and restrict her to a simple specification,
like a difference in averages. In contrast, this article characterizes flexible estimators
that leverage the data and researchers’ expertise, and do not also reflect researchers’
preferences.

To characterize optimal estimators when researcher and social preferences are
misaligned, I approach the analysis of experimental data as a mechanism-design
problem.2 Concretely, I consider a designer and an investigator who are engaged in
the estimation of an average treatment effect. As the designer, we aim to obtain a
precise estimate of the truth (which I capture in terms of mean-squared error). I
assume however that the investigator may care about the value of the estimate and
not only its precision. For example, the investigator may have a preference for large
estimates in order to get published. The investigator picks an estimator based on
her private information about the specific experiment. The designer chooses optimal
constraints on the estimation by the investigator.3

First, I establish that we should require that the investigator commits to an
unbiased estimator. More precisely, I prove that fixing the bias is a minimax optimal
solution to the designer’s problem and aligns the incentives of the investigator and
the designer under reasonable assumptions on preferences.4 Allowing for bias can,

1A literature in statistics dating back to at least Sterling (1959) and Tullock (1959), and most
strongly associated with the work of Edward Leamer (e.g. Leamer, 1974, 1978), acknowledges
that empirical estimates reflect not just data, but also researcher motives. Fears of biases have
been fueled more recently by replication failures (Open Science Collaboration, 2015), anomalies in
published p-values (Brodeur et al., 2016), and empirical evidence for publication biases (Andrews
and Kasy, 2017). This concern is also evident in the American Economic Association’s 2012 decision
to establish a registry for randomized controlled trials.

2 Like Leamer (1974, 1978), I explicitly consider researchers’ degrees of freedom. Like Glaeser
(2006), I also model their preferences.

3Abstractly, the designer could represent professional norms. Concretely, it could represent a
journal setting standards for the analysis of randomized controlled trials, or the U.S. Food and
Drug Administration (FDA) imposing rules for the evaluation of new drugs.

4This result echoes Frankel’s (2014) characterization of simple delegation mechanisms that align
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in principle, improve overall precision through a reduction in the variance. But an
investigator could use her control over the bias to reflect her preferences rather than
her private information. Among unbiased estimators, however, even an investigator
who wants to obtain an estimate close to some large, fixed value will still choose an
estimator that minimizes the variance.

Second, having motivated a restriction to unbiasedness, I prove that every unbi-
ased estimator of the average treatment effect has a sample-splitting representation.
As the starting point for this representation, consider a familiar estimator that is un-
biased, namely the difference in averages between treatment and control groups. We
can adjust this estimator for control variables by a procedure that splits the sample
into two groups. From the first group, we calculate regression adjustments that we
subtract from the outcomes in the second group. The updated difference in averages
is still unbiased by construction. Though this procedure appears specific, I prove
that any unbiased estimator can be represented by multiple such sample-splitting
steps. In particular, unbiased estimators can differ from a difference in averages only
by leave-one-out or leave-two-out regression adjustments of individual outcomes.

Third, I show that an investigator restricted to unbiasedness will solve a pre-
diction problem. By the sample-splitting representation, I can write every unbiased
estimator of the average treatment effect in terms of a set of regression adjustments.
When choosing from this restricted set of estimators, the investigator picks regres-
sion adjustments that minimize prediction risk for a specific loss function. Each
optimal adjustment predicts the outcomes of one or two units from other units in
the sample.

The investigator’s solution reveals a finite-sample complete-class theorem that
characterizes all admissible unbiased estimators of an average treatment effect as
solutions to out-of-sample prediction problems. Since my results hold exactly with-
out taking large-sample limits or relying on other approximations, I obtain a general
duality between unbiased estimation and prediction without putting any essential
restrictions on the distribution of the data other than random assignment of treat-
ment. Any admissible unbiased estimator corresponds exactly to a set of admissible
prediction solutions.

As a practical implication, my results motivate and describe flexible yet robust

an agent’s choices with a principal’s preferences by fixing budgets. In Section 4, I explore the
similarities of my solution to results in the mechanism-design literature on delegation that goes
back to Holmström (1978, 1984), and I exploit these parallels in the proof of my minimax result.
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pre-analysis plans for the analysis of experimental data.5 Having established that
unbiased estimation is equivalent to a set of prediction tasks, there are two types of
flexible pre-analysis plan that achieve precise estimation of treatment effects without
leaving room for bias from specification searches. In the first type, the investigator
commits to an algorithm that predicts outcomes from covariates. This algorithm
can engage in automated specification searches to learn a good model from the data.
Adjusting outcomes by its fitted out-of-sample predictions will yield an unbiased
estimator.

There is a second, more flexible type of pre-analysis plan that achieves unbi-
ased and precise estimation without the investigator committing to her specification
searches in advance. In this second type of pre-analysis plan, the investigator only
commits to splitting the data and distributing subsamples to her research team.
Each researcher then engages in specification searches on a part of the data and
reports back a prediction function. As my fourth main result, I characterize all un-
biased estimators of the treatment effect that delegate the estimation of some or all
regression adjustments in this way. Delegation to one researcher improves over sim-
ple pre-analysis plans.6 Delegation to at least two researchers asymptotically attains
the semi-parametric efficiency bound of Hahn (1998) under assumptions that apply
to most parametric and many semi- and non-parametric estimators of the regression
adjustments.

The results in this article relate to the practice of sample splitting in economet-
rics, statistics, and machine learning. From Hájek (1962) to Jackknife IV (Angrist
et al., 1999), model selection (e.g. Hansen and Racine, 2012), and time-series fore-
casting (see e.g. Diebold, 2015; Hirano and Wright, 2017), sample splitting is used as
a tool to avoid bias by construction. Wager and Athey (2017) highlight the role of
sample splitting in the estimation of heterogeneous treatment effects. Chernozhukov
et al. (2017b) show its relevance in achieving valid and efficient inference in high-
dimensional observational data. My results show that sample splitting is not just an
ad-hoc tool, but a feature of optimal estimators. I establish that sample splitting is

5Coffman and Niederle (2015), Olken (2015), and Heckman and Singer (2017) discuss the bene-
fits, costs, and limitations of pre-analysis plans. I resolve an implicit flexibility-robustness tradeoff
for one specific setting.

6My hold-out approach is similar to Dahl et al. (2008), Fafchamps and Labonne (2016) and
Anderson and Magruder (2017), who all propose split-sample strategies to combine exploratory
data analysis with valid inference. Dwork et al. (2015) propose a protocol to reuse the hold-out
data to improve efficiency. I show that in my setting simple hold-out procedures are dominated
when data can be distributed to multiple researchers.
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a necessary restriction on the investigator’s estimator to achieve unbiasedness and
align incentives.

Moreover, this article contributes to a growing literature that employs machine
learning in program evaluation. Supervised machine learning algorithms solve pre-
diction problems like those that I show to be equivalent to unbiased estimation (see
e.g. Mullainathan and Spiess, 2017). The proposed mechanism therefore allows re-
searchers to leverage machine learning in estimating average treatment effects in
experimental data. Wager et al. (2016) propose a similar estimator based on sep-
arate prediction problems in the treatment and control groups, and show that its
asymptotic variance only depends on the prediction risk of the regression adjust-
ments. Bloniarz et al. (2016) use the LASSO to select among control variables in
experiments. Athey and Imbens (2016) use regression trees to estimate heteroge-
neous treatment effects. Chernozhukov et al. (2017a) estimate treatment effects
from high-dimensional observational data. I contribute a finite-sample principal-
agent framework for integrating machine learning, which is mostly agnostic about
specific algorithms or asymptotic approximations.

My analysis is limited in three ways. First, I assume randomization, and thus
that identification is resolved by design. My findings extend to known propensity
scores, stratified and conditional randomization, and corresponding identification
from quasi-experiments.7 Second, I focus on the analysis of a single experiment,
and neither on repeated interactions between designer and investigator, nor on the
publication policies that may shape investigators’ preferences. Third, I characterize
optimal estimators in terms of prediction tasks, but I do not discuss in depth the
solution to these prediction problems. A large and active literature that straddles
econometrics, statistics, and machine learning provides guidance and tools to provide
efficient prediction functions.

The remaining article is structured as follows. Section 1 introduces the main ideas
behind my theoretical results in a stylized example. In Section 2, I formally lay out
the specific estimation setting and my mechanism-design approach. I preview my
main theoretical results in Section 3. In Section 4, I solve for optimal restrictions on
the investigator’s estimation. Section 5 characterizes unbiased estimators and solves

7When treatment is not random, endogeneity creates auxiliary prediction tasks in the propensity
score that interact with fitting regression adjustments (Robins and Rotnitzky, 1995; Chernozhukov
et al., 2017b). Finite-sample unbiased estimation may then be infeasible absent strong paramet-
ric assumptions, and inference may be invalid when these additional prediction tasks are ignored
(Belloni et al., 2014).
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for the investigator’s second-best choice. For the case that full ex-ante commitment
is infeasible or impractical, Section 6 considers unbiased estimators that permit ex-
post researcher input. In the Conclusion, I discuss extensions. In the Appendix, I
collect the proofs of my main results and discuss asymptotic inference. Additional
proofs and supplementary results can be found in the Supplementary Appendix.

1 A Simple Example

I consider the estimation of a sample-average treatment effect. But the main features
of my analysis are already apparent when we focus on a single unit within that
sample. As an example, I discuss the estimation of the effect of random assignment
to a job-training program on the earnings of one specific worker.8

1.1 Estimating the Unit-Level Causal Effect

The causal effect on unit i is τi = yi(1) − yi(0), where yi(1), yi(0) are the potential
outcomes when assigned to treatment or control, respectively. For assignment to a
job-training program, yi(1) = $1, 190 could be the earnings of worker i when he is
offered the training program, and yi(0) = $1, 080 the earnings of the same worker
without access to this training, so τi = $110. We do not observe both potential
outcomes for one unit simultaneously, but observe only the treatment status di and
the realized outcome

yi =

yi(1), di = 1,

yi(0), di = 0.

But since treatment is assigned randomly (with probability p = P(di = 1)), we
can still obtain an unbiased estimate of the unit treatment effect.9 Indeed, I will

8Throughout, I focus on intent-to-treat effects, so I do not consider take-up or the use of random
assignment as an instrument.

9 Here, I assume that we know that treatment has been assigned with known probability p =
P(di = 1). Throughout the remaining article, I also consider random assignment with a fixed
number of treated units rather than a known ex-ante probability of treatment. The case of known
number n1 of treated units has structurally similar features, but is not the same as the case
with known probability p = n1

n
. The reason for the difference is that knowledge of all other units’

treatment status is not informative about a given unit’s treatment status for known p, but perfectly
determines the left-out unit’s treatment status for known n1. Instead of leave-one-out regression
adjustments, for fixed n1 I therefore show in Section 5 that leave-two-out regression adjustments
fully characterize unbiased treatment-effect estimators.
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argue below that di−p
p(1−p)y is an unbiased estimator for τi. (Throughout, by “unbi-

ased” I mean that, for fixed potential outcomes yi(1) and yi(0), the treatment-effect
estimator averages out to yi(1)− yi(0) over random draws of treatment di.)

In addition to the realized outcome yi and treatment status di, I assume that we
also have access to some pre-treatment characteristics xi of unit i. Estimating the
treatment effect τi = yi(1) − yi(0) for, say, a treated unit (di = 1) amounts to im-
puting the missing, counterfactual control outcome yi(0). When we have additional
information about that unit, we can hope to use it together with the outcome, treat-
ment, and characteristic data z−i = (yj , dj , xj)j 6=i of all other units to estimate yi(0),
and thus τi. The investigator could, for example, run a linear regression of earnings
on treatment, pre-assignment earnings, and some basic demographic characteristics
to impute the counterfactual outcome yi(0). She could then estimate that worker’s
treatment effect by the difference between realized and imputed earnings.

If we do not put any restriction on estimation and investigator and social pref-
erences agree, then the investigator’s estimator will represent her expertise as well
as the data. I model the investigator’s expertise as a prior distribution π over po-
tential outcomes yi(1), yi(0) given characteristics xi. (To be more precise, this prior
will be over the joint distribution of the potential outcomes of all units given all
their controls.) If the investigator aims to minimize the average mean-squared error
Eπ(τ̂i − τi)2, then for di = 1 she will estimate τi by

τ̂i = Eπ[τi|yi, di, xi, z−i] = yi(1)︸ ︷︷ ︸
observed

−Eπ[

unobserved︷ ︸︸ ︷
yi(0) |yi(1), xi, z−i].

This estimator represents the investigator’s best guess of the treatment effect given
her prior and all information in the data. In the training-program example, one
specific prior could imply the use of Mincer polynomials in imputing the missing
counterfactual outcome by its posterior expectation Eπ[yi(0)|yi(1), xi, z−i].

1.2 Specification Searches and Optimal Restrictions on Estimation

If investigator and social preferences are misaligned, then the investigator’s estimator
may represent her incentives more than her expertise and the data. Even if the
investigator commits to an estimator ex-ante, she could still choose one that is biased
towards her preference rather than her prior. As the designer, we therefore should
not only require that the investigator commits to an estimator before she has seen
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all of the data, but also restrict the estimators the investigator can choose from.
We face a tradeoff between flexibility and robustness. Constraints that are too

permissive may lead to publication bias. One extreme solution would restrict the
investigator to simple specifications that do not use control covariates, or use them
only in simple linear regressions. Conventional pre-analysis plans often take this
form. But restricting the investigator to a few estimators may forfeit experiment-
specific knowledge about the relationship of control variables to outcomes in the
prior, which I assume encodes the private information of the investigator.

I show that unbiasedness is a restriction on estimation that resolves this tradeoff.
The first-best optimal estimator usually has bias. Indeed, the posterior expectation
of the treatment effect τi is usually biased towards the investigator’s prior expecta-
tion Eπτi. But when we leave the decision over bias to the investigator, then the
investigator may shrink her estimator to her preferred estimate instead of her prior.

Once we restrict the investigator to unbiased estimators of τi, even an investigator
who wants to minimize mean-squared error relative to some fixed target τ̃i (rather
than the true treatment effect) will minimize average mean-squared error relative to
the true treatment effect among unbiased estimators, since the investigator’s average
risk (or cost in the nomenclature of mechanism design) is then

Eπ(τ̂i − τ̃i)2 = Eπ(τ̂i − τi)2︸ ︷︷ ︸
social preference

+

unaffected by investigator choice︷ ︸︸ ︷
Eπ(τi − τ̃i)2 .

My first main result is that fixing the bias (e.g. to zero) represents an optimal
restriction in a minimax sense (Theorem 1) over a set of investigator preferences
that generalize this risk function (Assumption 5). That is, the investigator’s average
mean-squared error is minimal for an investigator that minimizes mean-squared error
relative to some worst-case target, given some (hyper-)prior over the investigator’s
private information.

1.3 Optimal Unbiased Estimation

Now that investigator and social preferences are aligned, how can the investigator
choose an unbiased estimator with low variance? For the unit-level treatment effect
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τi, a simple unbiased estimator is available. Indeed, the estimator

τ̂i =
di − p
p(1− p)

yi =

+1
pyi di = 1,

− 1
1−pyi di = 0,

is unbiased because E[τ̂i] = p1
pyi(1) − (1 − p) 1

1−pyi(0) = τi. But this estimator
can have very high variance. Assume that job training is assigned with probability
p = .5, and that the potential earnings are yi(1) = $1, 190 and yi(0) = $1, 080. Then

τ̂i =

+$2, 380 di = 1,

−$2, 160 di = 0,

is an unbiased, but extremely variable estimator of the treatment effect τi = $110.
Indeed, the variance of τ̂i under treatment assignment is

Var(τ̂i) = p(1− p)(τ̂i(di = 1)− τ̂i(di = 0))2,

so in the example the standard error amounts to
√

Var(τ̂i) = $2, 270.
We can modify this estimator by regression adjustments ŷi to obtain

τ̂i =
di − p
p(1− p)

(yi − ŷi). (1)

As long as ŷi only uses information from xi and z−i = (yj , dj , xj)j 6=i, and not the
outcome yi or treatment effect di, τ̂i will still be unbiased. My second main result
shows that all unbiased estimators of the treatment effect can be written in this way
(Lemma 1). Concretely, any unbiased estimator of the sample-average treatment
effect is the average over estimators τ̂i for all i that each include an adjustment that
uses data only from all other units. All unbiased estimators are thus equivalent to
a repeated sample-splitting procedure. Conversely, if ŷi is fitted, for example, by a
regression of y on x that violates the sample-splitting construction by also including
yi, then overfitting of ŷi to yi would bias the treatment-effect estimate towards zero.

Which regression adjustment minimizes variance? Optimally the investigator
would set ŷi to (1 − p)yi(1) + pyi(0), since this leads to τ̂i = τi. But without using
yi(1) or yi(0), the investigator’s best choice is the posterior expectation

ŷi = Eπ[(1− p)yi(1) + pyi(0)|xi, z−i].
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In the example, if the investigator’s best guess of the expected potential earnings,
yi(1)+yi(0)

2 , based on her prior and data on all other units is ŷi = $1, 100, then

τ̂i =

+2($1, 190− $1, 100) = $180 di = 1,

−2($1, 080− $1, 100) = $40 di = 0

is still unbiased for τi = $110, but has much lower variance (the standard error is now√
Var(τ̂i) = $70). My third main result shows that the investigator’s solution for the

regression adjustments in general takes this form (Theorem 2), and as a corollary
that all admissible (non-dominated) unbiased estimators can be achieved by exactly
these regression adjustments (Theorem 3).

1.4 Machine Learning

By construction, the estimator in (1) of the unit-level treatment effect τi is unbiased
whatever the regression adjustment is. In particular, the sample-splitting construc-
tion ensures that prior information only affects variance. Even a misspecified or
dogmatic prior does not systematically bias what we learn about τi. This robust
construction offers an opportunity to leverage tools that produce good predictions of
potential outcomes even when they come with little guarantees that would otherwise
ensure unbiasedness.

The optimal regression adjustments ŷi = Eπ[(1 − p)yi(1) + pyi(0)|xi, z−i] solve
an out-of-sample prediction problem. Take the special case p = .5.10 Then f̂i(xi) =

Eπ[.5yi(1)+.5yi(0)|xi, z−i] minimizes average prediction risk for the loss (f̂i(xi)−yi)2

where f̂i uses outcome and treatment data from all other units only. This is a
regression problem where the quality of fit is measured at a new sample point, and
not inside the training sample. Supervised machine-learning algorithms are built
to solve exactly such out-of-sample prediction problems. For example, shrinkage
methods like ridge regression of the LASSO can have better out-of-sample prediction
performance than a linear least-squares regression that optimizes the in-sample fit.

I also obtain an intuitive formula for calculating standard errors. The variance of
τ̂i is the expected loss in predicting the weighted potential outcome sum (1−p)yi(1)+

pyi(0) by the adjustment ŷi, which can be estimated from the realized outcome yi that
has been excluded from the construction of ŷi. When units are sampled randomly,

10When treatment is not balanced, p 6= .5, additional weights in the prediction loss express that
adjustments for the smaller group effectively get weighted up in (1). For details, see (2) in Section 5.
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I show that, under mild conditions on the construction of regression adjustments,
standard errors can be calculated from estimated prediction loss.

1.5 Unbiased Estimation without Pre-Specification

Regression adjustments incorporate flexibly the investigator’s expertise as well as the
data, but to ensure unbiasedness, the investigator must commit to their construction
in advance. Indeed, once the investigator has seen the full sample data, she cannot
credibly claim that some adjustment uses data only from other units. Practically,
the investigator could pre-specify a machine-learning algorithm that learns regression
adjustments from the data. But that may be impractical when the construction of
adjustments requires input by the researcher.

However, complete pre-specification is not necessary to ensure unbiasedness. In-
stead the investigator could commit to splitting and distributing the sample. As-
sume there is a researcher in the investigator’s resarch team that has not yet seen the
data. To obtain a regression adjustment for unit i, the investigator could give that
researcher access to data only from all other units. That researcher then takes the
subsample, solves a prediction problem to obtain a good adjustment ŷi, and returns
that regression adjustment to the investigator, who estimates the treatment effect
according to (1). In that case, that researcher’s choice will not introduce bias even
if the researcher does not commit to the construction of the regression adjustments
in advance.

Of course, estimating the average treatment effect on all n sample units in this
way would require a team of n researchers. But my fourth main result characterizes
all unbiased estimators that remain feasible without detailed pre-specification and
when onlyK researchers are available (Corollary 1). Even ex-post analysis by a single
researcher improves over simple pre-analysis plans without the need for detailed pre-
specification. I also show that delegating estimation to two researchers approximates
optimal estimation in that it ensures asymptotic efficiency under mild conditions.

2 Setup

Having given a simple example, I now lay out formally how I approach causal in-
ference as a mechanism-design problem. A designer delegates the estimation of an
average treatment effect in a randomized experiment to an investigator. The investi-
gator receives a private signal about the distribution of potential outcomes, but has
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unknown preferences that can be biased. The designer does not analyze the dataset
herself, but instead sets constraints on the investigator’s estimator.

In this section, I first define the data-generating process and target parameter
before introducing the investigator’s and designer’s problems. To simplify the further
analysis, I then argue that we can restrict the analysis to direct restrictions by the
designer on the space of estimators the investigator commits to.

2.1 Target Parameter

Following Neyman (1923), I am interested in the average treatment effect

τθ =
1

n

n∑
i=1

(yi(1)− yi(0))︸ ︷︷ ︸
=τi

θ = (yi(1), yi(0))ni=1

in a given sample of n units. In the Rubin (1974, 1975, 1978) causal model interpre-
tation, yi(di) is the potential outcome of unit i had they received treatment status
di ∈ {0, 1}, and τi the respective causal effect.

The n units may be randomly sampled from a population distribution,

(yi(1), yi(0), xi)
iid∼ P,

with pre-treatment characteristics xi ∈ X . In this case, my analysis will extend to
the estimation of the population-average treatment effect τ = E[yi(1)−yi(0)] and the
conditional average treatment effect (given characteristics x ∈ X n) 1

n

∑n
i=1 E[yi(1)−

yi(0)|xi]. My main analysis is conditional on (yi(1), yi(0), xi)
n
i=1 and therefore focuses

on the sample-average treatment effect τθ, but I will return to τ when I discuss
inference.

2.2 Experimental Setup

I assume that treatment is assigned randomly to overcome the missing-data problem
central to causal inference (Holland, 1986). For a unit with treatment status di,
we only observe the realized outcome yi = yi(di). But because I assume that the
distribution of treatment assignment d ∈ {0, 1}n does not vary with the potential
outcome vectors y(1), y(0) ∈ Rn (Cochran, 1972), we can estimate the treatment
effect without bias. The stable-unit treatment effect assumption (Rubin, 1978) of
no interference between units is implicit.
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Assumption 1 (Random Treatment). Given potential outcomes θ = (yi(1), yi(0))ni=1,
the data z = (yi, di)

n
i=1 is distributed according to Pθ as follows. d is generated from

a known distribution over {0, 1}n that does not depend on (y(1), y(0)) and is one of:

1. Each unit is independently assigned to treatment with known probability p =

P(di = 1) (where 0 < p < 1).

2. d is drawn uniformly at random from all assignments with known number n1 =∑n
i=1 di of treated units (where 0 < n1 < n).

Given d, yi = yi(di) for all i ∈ {1, . . . , n}.

In this notation, I do not explicitly include the covariates x1, . . . , xn in the data
z, since I condition on the controls and therefore treat (xi)

n
i=1 as a constant and not

as a random variable. While neither of the distributions of d depends on the controls,
my results will extend to distributions that are known functions of xi if they ensure
identification of τθ. These include stratified or conditional random sampling, and
sampling according to known propensity scores.

2.3 Covariate Adjustments

How can we estimate the sample-average treatment effect τθ from data (yi, di, xi)
n
i=1?

Since treatment is exogenous, the average difference

τ̂∗(z) =
1

n1n0

∑
di=1,dj=0

(yi − yj) =
1

n1

∑
di=1

yi −
1

n0

∑
di=0

yi

between treatment and control outcomes is an unbiased estimator of τθ conditional
on the number n1 of treated units (provided 0 < n1 < n).

Of course this difference in averages τ̂∗ leaves information in the covariates
x1, . . . , xn on the table and is likely inefficient. In econometric practice, τθ is therefore
often estimated from a linear regression of the outcome on treatment and controls.
But the researcher’s choice of control strategy can bias published results. First, im-
plicit model assumptions may bias estimates. Even simple linear regressions can be
biased (Freedman, 2008), although this bias vanishes asymptotically if interactions
are included (Lin, 2013). Second, if the investigator does not document that she
picked among multiple covariate adjustments, an unsuspecting observer’s inference
may be biased towards stronger treatment effects and unjustified confidence (Lenz
and Sahn, 2017).
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2.4 Estimation Preferences

I explicitly consider the choice of the control specification in a mechanism-design
framework. A designer and an investigator face a choice of an estimator

τ̂ : Z → R

that maps experimental data z = (y, d) ∈ (Y × {0, 1})n = Z into an estimate
τ̂(z) of the sample-average treatment effect τθ. Since my analysis is conditional on
the control covariates, this estimator encodes in particular how the estimate of the
treatment effect is adjusted for the realizations x1, . . . , xn of the control variables.

Designer and investigator preferences are expressed by risk functions rD, rI :

Θ × RZ → R that encode the expected loss rDθ (τ̂), rIθ(τ̂) of an estimator τ̂ ∈ RZ

given the full matrix θ = (y(1), y(0)) ∈ Y2n = Θ of 2n potential outcomes in the
sample at hand. Both designer and investigator aim to minimize their respective
risk given the potential outcomes θ. Throughout this article, I specifically assume
that the designer’s risk function expresses a social desire to obtain precise estimates
of the true treatment effect τθ.

Assumption 2 (Social risk function). The designer’s risk for an estimator τ̂ : Z →
R is the estimator’s mean-squared error

rDθ (τ̂) = Eθ[(τ̂(z)− τθ)2],

where the expectation averages over random treatment assignment given potential
outcomes θ ∈ Θ.

Notably, I do not assume that the designer has an inherent preference for un-
biased estimators.11 While my characterization results will depend on this specific
form of the social risk function, the general mechanism-design approach extends to
alternative risk (or equivalently utility) functions.

The investigator’s risk function can differ from the designer’s risk function. For
example, I will later consider risk functions that include rIθ(τ̂) = Eθ[(τ̂(z) − τ̃)2],
which expresses a desire to obtain a certain estimate τ̃ irrespective of the true treat-
ment effect τθ. The designer knows only that rI ∈ R for some set of risk functions.

11Still, the minimization of squared-error loss is associated with unbiasedness, as e.g. in Lehmann
and Romano (2006, Example 1.5.6).
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2.5 Prior Information

Since generally no single estimator τ̂ minimizes risk for all potential outcomes θ ∈
Θ and θ is not known, a good estimator has to trade off risk performance across
different draws of potential outcomes. Following Wald (1950), I assume that a prior
distribution π over potential outcomes governs this tradeoff.12

The investigator receives the prior distribution π over potential outcomes θ as
a private signal before the data z is realized. This private information models re-
searcher expertise. For example, the investigator may have run previous studies or a
pilot and synthesize relevant results in the literature. The investigator therefore has
a sense which variables are important and which regression specifications are more
likely to work well.

The uninformed designer does not observe the prior π, but only has a diffuse
(hyper-)prior η for π. The designer therefore designs a mechanism that elicits the
investigator’s prior information. Optimally, the designer would want to obtain an
estimator that minimizes average mean-squared error given the investigator’s private
prior, but since the investigator’s preferences may differ from the designer’s, the latter
cannot generally achieve a first-best estimator.

2.6 Mechanism Structure and Timeline

I assume that the designer has the authority to set rules in the form of a mechanism
without transfers. The designer cannot verify the investigator’s risk type or private
prior information. The investigator follows whatever mapping from investigator
decisions to final estimator the designer sets, and the designer follows through on
the mapping she commits to. Similar to Frankel’s (2014) delegation setup, the game
between designer and investigator plays out in the following steps:

1. The designer chooses a mechanism that consists of a message space M and a
mapping from messages m into estimators τ̂m : Z → R.

2. The investigator observes the prior distribution π and sends a messagem(rI , π).
12One alternative approach to finding a good estimator would involve putting restrictions on

the distribution of potential outcomes and discussing efficient estimators under some large-sample
approximation. But since researchers may reasonably disagree about these choices, this would itself
add an additional degree of freedom to estimation. I instead consider estimation in an exact finite-
sample decision-theoretic framework that does not restrict the distribution of potential outcomes.
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Figure 1: Estimation timeline

3. The potential outcomes θ are realized, the data z drawn according to the
experiment, and the estimate τ̂m(rI ,π)(z) formed.

In econometric terms, I think of the investigator’s message as a modelling de-
cision. The designer then restricts the space of models the investigator can choose
from.

For simplicity, I assume that the investigator’s message given her risk type and
private information and the mapping of her message to the final estimator are de-
terministic, but the setup extends to stochastic actions as in Frankel (2014). By the
revelation principle, the specific form of the mechanism is not a substantial restric-
tion, since it includes direct mechanisms in which the investigator reveals her risk
type and her private information (as e.g. in Holmström, 1984).

Since the investigator controls the estimator with her choice of message, we can
assume without loss of generality that the message space is a set of estimators (and
the mapping from message to estimator the identity). Indeed, take any estimator
that is an outcome for some message. Since neither risk type nor prior are verifiable,
the investigator can always choose that message to obtain said estimator.

Hence, the designer directly restricts estimators to some set CD. Subject to
the constraint, the investigator specifies an estimator τ̂ I ∈ CD before data becomes
available. Once the data z ∈ Z is realized, the investigator reports the estimate τ̂ I(z)
(Figure 1). Since my econometric analysis is conditional on the control variables
x1, . . . , xn, this baseline information can be available to the investigator and inform
her choice of estimator.

Optimal estimation in this framework will require some degree of commitment by
the investigator before the data is available. Otherwise, any restriction on estimation
would be cheap talk, since the investigator could choose an estimator ex post that
justifies their preferred estimate at the realized data. But I will show that optimal
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commitment is less constraining than restricting the investigator to pre-analysis plans
with simple specifications that are chosen ex ante. First, the investigator’s estimator
can still contain (automated) specification searches. Second, in Section 6, I show that
it is not generally necessary to specify the full estimator ex ante, and that additional
exploratory analysis after the data has become available can improve estimation.

2.7 Investigator and Designer Choices

Having set up the actions available to the investigator and designer, I now describe
their preferences. The investigator chooses an estimator to minimize average risk
subject to her prior.

Assumption 3 (Investigator’s choice). Given the prior distribution π over potential
outcomes θ ∈ Θ, the investigator minimizes average risk subject to the constraint
CD ⊆ RZ set by the designer,

τ̂ I = τ̂ I(CD, π) ∈ arg min
τ̂∈CD

Eπ[rIθ(τ̂)].

The designer does not know the risk function of the investigator, but only assumes
that it falls within some set R of risk functions. Adapting the maxmin criterion
from the mechanism-design literature (e.g. Hurwicz and Shapiro, 1978; Frankel, 2014;
Carroll, 2015), I assume that the designer chooses a constraint that minimizes average
risk at a worst-case investigator type within that set.

Definition 1 (Designer’s minimax delegation problem). Given some set R of inves-
tigator risk functions, the designer picks a constraint CD ⊆ RZ to minimize average
mean-squared error,

CD = CD(R, η) ∈ min
C⊆RZ

sup
rI∈R

Eη[rDθ (τ̂ I)],

where I assume that the investigator breaks ties in the designer’s favor.

The minimax criterion can be seen as a game between designer and nature.
For every choice of restriction that the designer picks, nature responds with an
investigator who produces maximal average mean-squared error. In this game, the
designer picks a constraint that ensures that the average risk at a worst-case outcome
is minimal.
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Without constraints, the investigator’s estimator may be a poor fit from the
designer’s perspective. But if the constraints are too restrictive, for example if we
reduce the allowed set of estimators to the difference in averages τ̂∗, we will use the
investigator’s expertise inefficiently. I therefore solve for constraints CD that resolve
this tradeoff between flexibility and robustness optimally.

2.8 Support Restriction

Throughout this article, I assume that the support of (potential) outcomes is finite,
for three reasons. First, I adapt results from the mechanism-design literature that
involve finite sums. Second, I use and provide complete-class theorems that fully
characterize admissible (non-dominated) estimators provided their support is finite.
Third, I derive intuitive combinatorial proofs for my characterization results.

Assumption 4 (Finite support). The support Y of potential outcomes yi(1), yi(0)

is finite.

Since the number of support points is otherwise unrestricted, the finite-support
assumption allows for flexible approximations to arbitrary distributions.

3 Overview of Main Results

In this section, I preview my main theoretical results. Under reasonable restrictions
on investigator preferences, I show that fixing the bias is a minimax optimal con-
straint on estimation. I then present a representation of unbiased treatment-effect
estimators, characterize the investigator’s optimal choice from this restricted class,
and extend the analysis to estimators with limited pre-specification.

I assume that investigator risk functions express mean-squared error relative to
some target which may not be the true treatment effect.

Assumption 5 (Investigator risk restriction). The investigator has a risk function
from the set

R∗ = {rI ; rIθ(τ̂) = Eθ[(τ̂(z)− τ̃θ)2] for some τ̃ : Θ→ R}.

The target function τ̃θ is unrestricted in this definition. For example, the in-
vestigator may want to achieve a constant target no matter what the true potential
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outcomes are (τ̃θ = const.). Or the investigator may prefer to obtain estimates above
the true treatment effect (τ̃θ = τθ + ε).

In any of these cases, restricting investigators to unbiased estimators (Eθ[τ̂(z)] =

τθ) ensures that they choose among these estimators as if they had the designer’s
preference, i.e. they minimize average variance. Once I have established tools for
asymptotically valid inference, it will also follow that unbiasedness aligns the choices
of investigators who want to obtain a small standard error or a low p-value.

While fixing the bias aligns preferences, this restriction may be too strong. How-
ever, I establish that it is minimax optimal for an appropriate choice of biases.

Theorem 1 (Fixed bias is minimax optimal). Write ∆∗(Θ) for all distributions over
Θ with full support. For every hyperprior η with support within ∆∗(Θ) there is a set
of biases βη : Θ→ R such that the fixed-bias restriction

Cη = {τ̂ : Z → R;Eθ[τ̂ ] = τθ + βηθ }

is a minimax optimal mechanism in the sense of Definition 1, i.e.

Cη ∈ arg min
C

sup
rI∈R∗

Eη
[
rDη

(
arg min
τ̂∈C

Eπ[rIθ(τ̂)]

)]
.

This result implies that the designer should not leave the choice of bias to the
investigator. If the designer has an informative prior, she may set biases to reflect
that information. But with little information on the designer’s side, a natural choice
of biases is zero.

With a zero-bias restriction, the investigator chooses among all unbiased estima-
tors to minimize variance. The next result characterizes all unbiased estimators, and
therefore the choice set of the investigator.

Lemma 1 (Representation of unbiased estimators). The estimator τ̂ is unbiased,
Eθ[τ̂(z)] = τθ for all potential outcomes θ ∈ Θ, if and only if:

1. For a known treatment probability p, there exist leave-one-out regression ad-
justments (φi : (Y × {0, 1})n−1 → R)ni=1 such that

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − φi(z−i)).

19



2. For a fixed number n1 of treated units, there exist leave-two-out regression
adjustments (φij : (Y × {0, 1})n−2 → R)i<j such that

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − φij(z−ij)),

where φij(z−ij) may be undefined outside 1′d−ij = n1 − 1.

All unbiased estimators are hence sample-splitting estimators that leave one or
two units out, respectively, when calculating their regression adjustments. But when
is an estimator not just unbiased, but also precise? The investigator would optimally
want to set regression adjustments to the oracle solutions

ȳi = (1− p)yi(1) + pyi(0),

∆ȳij =
(n0

n
yi(1) +

n1

n
yi(0)

)
−
(n0

n
yj(1) +

n1

n
yj(0)

)
,

respectively, but since the potential outcomes are unknown, these adjustments are
infeasible. Instead, I show that the investigator chooses leave-one-out or leave-two-
out expectations of these adjustments.

Theorem 2 (Solution of the investigator). An investigator with risk r ∈ R∗ and
prior π over Θ chooses the following unbiased Bayes estimators:

1. For a known treatment probability p,

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − Eπ[ȳi|z−i]).

2. For a fixed number n1 of treated units,

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − Eπ[∆ȳij |z−ij ]).

Hence, all optimal unbiased estimators take as regression adjustments conditional
expectations of potential outcomes. These conditional expectations can be obtained
as solutions to a prediction problem. Independently of the mechanism-design setup,
the set of investigator solutions across different priors completely characterize the
class of admissible unbiased estimators of the sample-average treatment effect.
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Theorem 3 (Complete-class theorem for unbiased estimators). For any unbiased
estimator τ̂ of the sample-average treatment effect that is not dominated with respect
to variance, there is a converging sequence of priors (πt)

∞
t=1 with full support such

that τ̂ equals the limit of the respective estimators in Theorem 2. Conversely, for any
converging sequence of priors (πt)

∞
t=1 that put positive weight on every state θ ∈ Θ,

the limit of the estimators is admissible among unbiased estimators.

Now that I have characterized the optimal solution of the designer and the in-
vestigator, I return to the question of commitment. The representation of unbiased
estimators in Lemma 1 requires that the construction of regression adjustments does
not involve the adjusted unit. In Theorem 2, the investigator would therefore have
to commit to their construction before she has access to the full sample. This pre-
specification leaves room for automated specification searches in constructing the
adjustments. But fully pre-specifying all specification searches may be impractical.

I also characterize estimators that ensure unbiasedness not by the investigator
fully pre-specifying adjustments, but by a commitment to a sample-splitting scheme.
I consider estimation contracts that have the investigator delegate estimation tasks
on subsamples to K researchers who do not share information about the data they
receive.

Definition 2 (K-distribution contract). A K-distribution contract τ̂Φ distributes
data z = (y, d) ∈ (Y × {0, 1})n = Z to K researchers. Researcher k receives data
gk(z) ∈ Ak and returns the intermediate output φ̂k(gk(z)) ∈ Bk. The estimate is

τ̂Φ((φ̂k)
K
k=1; z) = Φ((φ̂k(gk(z))

K
k=1; z).

The investigator chooses the functions gk (from data in Z to researcher input in Ak)
and Φ (from the researcher outputs in×K

k=1Bk and data in Z to estimates in R)
before accessing the data.

As one special case of my general representation result of unbiasedK-distribution
contracts, I characterize unbiased estimators that divide the sample into K folds and
then give each researcher access to all but one of these folds. In that case, I deduce
from the representation of unbiased estimators in Lemma 1 that the estimator is
unbiased if and only if each researcher only controls the regression adjustments for
the respective left-out fold.
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Corollary 1 (Characterization of unbiased K-fold distribution contracts). For K
disjoint folds Ik ⊆ {1, . . . , n} with projections gk : (y, d) = z 7→ z−Ik = (yi, di)i 6=Ik ,
a K-distribution contract τ̂Φ is unbiased if and only if:

1. For a known treatment probability p,there exist a fixed unbiased estimator τ̂0(z)

and regression adjustment mappings (Φk)
K
k=1 such that

τ̂Φ((φ̂k)
K
k=1; z) = τ̂0(z)− 1

n

K∑
k=1

∑
i∈Ik

di − p
p(1− p)

φki (z−i)

where (φki )i∈Ik = Φk(φ̂k(z−Ik)).

2. For a fixed number n1 of treated units, there exist a fixed unbiased estimator
τ̂0(z) and regression adjustment mappings (Φk)

K
k=1 such that

τ̂Φ((φ̂k)
K
k=1; z) = τ̂0(z)− 1

n1n0

K∑
k=1

∑
{i<j}⊆Ik

(di − dj)φkij(z−ij),

where (φki )i∈Ik = Φk(φ̂k(z−Ik)).

These sample-distribution contracts achieve unbiasedness without detailed com-
mitments by the researchers. For K = 1, I show that giving one researcher (with risk
function in the set R∗) access to part of the sample for exploratory ex-post analysis
can improve over simple pre-analysis plans. For K = 2, I show that a flexible pre-
analysis plan that specifies distribution to two researchers asymptotically achieves
semi-parametric efficiency when the units are sampled iid under conditions on the
population distribution.

4 Designer’s Solution

Having set up the estimation of a sample-average treatment effect as a mechanism-
design problem, I justify a restriction to unbiasedness by solving the designer’s dele-
gation problem. Subject to unbiasedness, the investigator pre-specifies an estimator
according to the designer’s preferences. I prove minimax optimality of fixed-bias
restrictions, echoing a result from mechanism design on optimal delegation.
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4.1 The Role of Bias

When there is no misalignment of preferences, then the resulting first-best estimator
that minimizes average mean-squared error will generally have bias. To understand
how being flexible on bias can improve estimation, note that both bias and variance
contribute to the risk

rDθ (τ̂) = Eθ[(τ̂ − τ)2] = (Eθ[τ̂ ]− τ)2︸ ︷︷ ︸
bias

+Varθ(τ̂)︸ ︷︷ ︸
variance

the designer aims to minimize. We can often improve an unbiased estimator by
moving along this bias-variance tradeoff. Indeed, consider the first-best solution
τ̂π = arg minτ̂ Eπ[rDθ (τ̂)] of the designer. The estimate τ̂π(z) = Eπ[τθ|z] comprises
the posterior expectations Eπ[yi(1)− yi(0)|z], which are usually biased towards the
prior expectation of unit treatment effects when the prior is informative along this
dimension.

But if the designer leaves the decision over bias to the investigator, then an
investigator who has biased preferences will be inclined to bias the estimator in the
direction of her preferences, not of her prior. Consider an investigator with risk

rIθ(τ̂) = Eθ[(τ̂(z)− (τθ + ε))2] (ε > 0)

who would like to show that the treatment effect is higher than it is. The investiga-
tor’s unconstrained solution is now shifted upward by ε, which is added to the bias
term. While reducing the variance relative an unbiased estimator, the designer’s risk
may also be increased through additional bias.

For choices among estimators with fixed bias, however, the investigator’s and
designer’s preferences in this example are perfectly aligned. With bias fixed at zero,
say, mean-squared error is variance, rDθ (τ̂) = Varθ(τ̂). The ε-biased investigator’s
risk is rIθ(τ̂) = ε2 + Varθ(τ̂). While risks are not the same, they are shifted by a
constant. There is no distortion in choices between estimators with fixed bias for
this investigator loss function.

4.2 Unbiased Estimation as Second-Best

Having motivated in an example that fixing the bias can align investigator choices,
I extend alignment to a minimax result. If the investigator has constant bias, I have
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shown that among estimators with fixed bias she will still commit to a variance-
minimizing estimator. To show that this example extends to an optimal solution, I
have to establish that the unbiasedness restriction is neither too permissive nor too
restrictive.

The unbiasedness restriction

C∗ = {τ̂ : Z → R;Eθ[τ̂ ] = τθ∀θ ∈ Θ}

is not too permissive provided that investigators all choose as if they minimized
mean-squared error relative to some target, albeit not necessarily relative to the
true treatment effect.

Assumption 5 (Investigator risk restriction). The investigator has a risk function
from the set

R∗ = {rI ; rIθ(τ̂) = Eθ[(τ̂(z)− τ̃θ)2] for some τ̃ : Θ→ R}.

The target τ̃θ can vary arbitrarily with the potential outcomes. In particular,
permissible risk functions include constant biases relative to the truth (τ̃ = τ + ε) or
fixed estimation targets (τ̃ = const.). R∗ also includes the designer’s risk function
rD at τ̃ = τ .

Lemma 4.1 (Unbiasedness aligns estimation). If the investigator has risk from R∗

then the investigator will choose from the unbiased estimators C∗ according to the
designer’s preferences.

Once I have established asymptotically valid inference for unbiased estimators
in Appendix E, I will also show in Remark E.3 that the unbiasedness restriction
aligns the choices of investigators who want to obtain small standard errors or tight
confidence intervals. For a local-to-null alternative, by Remark E.4 unbiasedness
also insures asymptotic alignment in large samples when the investigator wants to
obtain a low p-value (that is, wants to maximize the power of a test against some
null hypothesis τθ = τ0).

Note, however, that there are many risk (or equivalently utility) functions for
which unbiasedness does not provide alignment. In particular, unbiasedness may be
a poor alignment device for non-convex loss functions. Take an investigator who
wants to produce an estimate that does not reject some null hypothesis, for example
when running a balance or robustness check. In that case, if some valid way of

24



calculating standard errors is available, the investigator would want to obtain high
variance even among unbiased estimators in order to weaken the evidence against
her preferred null hypothesis.

For the class R∗ of investigator risk functions, fixing the bias is not too restric-
tive because it is minimax optimal over investigator preferences. While Lemma 4.1
establishes that choices from unbiased estimators will be the same for any rI ∈ R∗,
there could be a larger set of estimators that provide alignment, or full alignment of
preferences could be too costly.

Theorem 1 (Fixed bias is minimax optimal). Write ∆∗(Θ) for all distributions over
Θ with full support. For every hyperprior η with support within ∆∗(Θ) there is a set
of biases βη : Θ→ R such that the fixed-bias restriction

Cη = {τ̂ : Z → R;Eθ[τ̂ ] = τθ + βηθ }

is a minimax optimal mechanism in the sense of Definition 1, i.e.

Cη ∈ arg min
C

sup
rI∈R∗

Eη
[
rDη

(
arg min
τ̂∈C

Eπ[rIθ(τ̂)]

)]
.

This minimax result shows that the gains from variance reduction of being flexible
on bias are fully undone by the cost of misalignment for a worst-case risk function,
for any relaxation of the fixed-bias restriction. Once we allow the bias to track the
prior, it could as well reflect the preference of a worst-case investigator. The designer
therefore chooses fixed biases that reflect her hyperprior.

Setting βθ ≡ 0 (and thus Cη = C∗) represents a hyperprior that is uninformative
about the location of treatment effects. In principle, if the designer has a hyperprior
η that is quite informative, she could introduce biases towards expected treatment
effects under that hyperprior. Crucially, however, these biases would be fixed ex-
ante and not chosen by the investigator. In Supplementary Appendix F, I construct
hyperpriors that deliver zero bias. There I also argue how an approximately unin-
formative hyperprior delivers approximately unbiased estimation in general as the
support grows.

4.3 Connection to Aligned Delegation

My econometric finding that unbiased estimation is minimax optimal (Theorem 1)
builds upon a mechanism-design result by Frankel (2014). There, a principal dele-
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gates decisions to an agent who observes states. Frankel (2014) characterizes opti-
mal delegation mechanisms without transfers. In a class of maxmin optimal, simple
mechanisms, the agent behaves according to the principal’s preferences.

In a leading example from Frankel (2014), a school principal delegates the grading
of a group of students to a teacher. The teacher may prefer to give more skewed or
better grades than the principal, who does not observe the students’ performance.
However, the principal can exploit that the teacher’s biased preferences are consistent
across students. If the teacher and the principal agree on the ranking of students,
fixing the distribution of grades obtains a second-best grade assignment. If the
teacher has a constant bias, fixing the average grade already achieves agreement
between principal and teacher. In both cases, the teacher chooses from the restricted
grade assignments according to the principal’s preferences.

What a fixed average is to grading in Frankel (2014), constant bias is to esti-
mation in my setting. More precisely, I identify Frankel’s (2014) school principal
with my designer, the teacher with the investigator, and individual students with
different draws of the data. In the school example, the performance of students is
the private information of the teacher. For estimation, the prior distribution over
potential outcomes is the private information of the investigator. Where the teacher
chooses a grade for each student, the investigator commits to an estimator, that is,
the investigator chooses an estimate for each (potential) draw of the data.

Frankel (2014) shows that fixing the average over grades is a maxmin (in utility
terms) optimal mechanism for a class of biased squared-error preferences. Analo-
gously, my fixed-bias restriction fixes weighted sums over estimates. But since fixing
the bias requires setting many sums at once, and the designer’s and investigator’s
preferences involve weights determined by the prior, additional work is required
to establish the minimax optimality in Theorem 1. In Appendix A, I show how
Frankel’s (2014) result carries over to the designer’s problem across all θ ∈ Θ, where
the investigator sets all (2|Y|)n values of τ̂(y, d) simultaneously.

4.4 Design of Experiment vs Design of Estimator

In Theorem 1, I have assumed that treatment is assigned randomly according to
some fixed rule, but my results extend to the design of treatment assignment itself.
The investigator may leverage prior knowledge about potential outcomes to adjust
propensity scores (Kasy, 2016). For example, if the prior distribution of treated
outcomes has larger variance than that of controls, the investigator may want to
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assign more units to treatment. Under the unbiasedness restriction, the investigator’s
preference over this additional decision remains aligned with the goal of the designer.

5 Investigator’s Solution

The designer restricts the investigator to unbiased estimators. In solving the investi-
gator’s constrained optimization problem, I establish that optimal unbiased estima-
tion is equivalent to a set of out-of-sample prediction tasks. I obtain a complete-class
theorem that characterizes admissible unbiased estimators of the sample-average
treatment effect.

Throughout this section, I assume that the investigator fully specifies her es-
timator before it is applied to outcome and treatment data z = (y, d). Although
the estimator is pre-specified, it can still include (automated) specification searches.
The pre-specified estimator thus plays the role of a flexible pre-analysis plan. Since
my results hold conditional on potential outcomes, the covariates x1, . . . , xn can be
common knowledge before this pre-analysis plan is filed. In Section 6, I show how the
results in this section extend when pre-specification is impractical. There, I provide
a constructive characterization of pre-analysis plans that only commit to the way
the sample is split and distributed.

5.1 Characterization of Unbiased Estimators

When is an estimator unbiased, conditional on potential outcomes? The designer
requires that the investigator provides an unbiased estimator. In this section, I
provide an intuitive representation of unbiased estimators that the investigator can
achieve transparently by construction.

A class of estimators that ensures unbiasedness is obtained by sample splitting.
For known treatment probability p, the Horvitz and Thompson (1952) estimator
τ̂HT = 1

n

∑n
i=1

di−p
p(1−p)yi is unbiased for any pair of potential outcome vectors because

Eθ
[
di − p
p(1− p)

yi

]
= yi(1)− yi(0).

If we replace outcomes yi by adjusted outcomes yi − φi(z−i) with regression adjust-
ments that do not vary with (yi, di), where z−i denotes the data (yj , dj)j 6=i from all
units other than i, then the resulting estimator is still unbiased. (Recall that I con-
dition on controls x1, . . . , xn throughout.) Since the adjustment φi(z−i) is the same
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whether unit i is treated or not and Eθ
[
di−p
p(1−p)

∣∣∣z−i] = 0, their addition averages out
to zero, no matter the potential outcomes or realized treatment of the other units.13

I show that these sample-splitting estimators are also all estimators that are un-
biased conditional on potential outcomes. If an estimator cannot be written as a
Horvitz and Thompson (1952) estimator with leave-one-out regression adjustments,
it must have bias for some matrix of potential outcomes. If instead we considered
estimators that are unbiased given some distribution of potential outcomes (for ex-
ample, we may want to model noise terms in potential outcomes that we do not want
to condition on), then the result would trivially extend as long as we do not restrict
this distribution. If an estimator cannot be written in this leave-one-out form, it
must have bias for some distribution of potential outcomes.

A leave-one-out estimator can have bias conditional on the number of treated
units. If the number n1 of treated units is known, the leave-one-out adjustment
φi(z−i) implicitly depends on di = n1 −

∑
j 6=i dj . For permutation randomization,

I therefore start with the difference in averages τ̂∗ = 1
n1n0

∑
di=1,dj=0(yi − yj) and

establish that all unbiased estimators differ from τ̂∗ only by leave-two-out regression
adjustments φij(z−ij). In every sample split, these unbiased estimators leave out
one treated and one untreated unit.14

Lemma 1 (Representation of unbiased estimators). The estimator τ̂ is unbiased,
Eθ[τ̂(z)] = τθ for all potential outcomes θ ∈ Θ, if and only if:

1. For a known treatment probability p, there exist leave-one-out regression ad-
justments (φi : (Y × {0, 1})n−1 → R)ni=1 such that

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − φi(z−i)).

2. For a fixed number n1 of treated units, there exist leave-two-out regression
13It would not be enough to exclude the treatment status di from the constriction of unit i’s

regression adjustment, and thus use yi, since yi can be correlated with di.
14Aronow and Middleton (2013) propose similar unbiased covariate adjustments of the Horvitz

and Thompson (1952) estimator. Wager et al. (2016) consider leave-one-out estimators separately
in the treatment and control groups, and use a leave-two-out construction to derive asymptotic
unbiasedness.
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adjustments (φij : (Y × {0, 1})n−2 → R)i<j such that

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − φij(z−ij)),

where φij(z−ij) may be undefined outside 1′d−ij = n1 − 1.

The representations are restrictive, but not unique. In the minimal non-trivial
case n = 2 and |Y| = 2 for known treatment probability, the leave-one-out repre-
sentation reduces the dimension of estimators τ̂ ∈ R(Y×{0,1})n from 16 to 8. The
unbiased estimators form a 7-dimensional affine linear subspace, and equivalent rep-
resentations lie on lines in Euclidean space.

Notably, linear regression can not generally be represented in this way, as it is
not generally unbiased in my setting (Freedman, 2008). In Appendix D, I provide
a simple example of a biased OLS regression. Also, I make a connection between
overfitting and bias, and show that bias can persist even under sampling from a
population distribution and in large samples with high-dimensional controls.

We usually associate sample splitting with losses in efficiency in return for ro-
bustness. Since all unbiased estimators must split the sample, this logic applies here
only through the robustness of the unbiasedness assumption to any distribution of
potential outcomes. As long as we do not impose additional structure, all admissible
(with respect to variance or equivalently mean-squared error) unbiased estimators
must be among the sample-splitting estimators.

This result implies that the set of unbiased estimators the investigator chooses
from is characterized by prohibitions. When we represent an estimator by a sum
over adjusted outcomes, then there must be one such representation for which the
investigator is not allowed to use the outcome and treatment assignment of a unit to
construct its adjustment. For this prohibition to apply, in practice the investigator
has to commit how the adjustment is constructed before she has access to the re-
spective outcome and treatment status. I show below that this commitment leaves
room for automated specification searches, and discuss in Section 6 that human
specification searches also remain feasible.

5.2 Solution to the Investigator’s Problem

Given the unbiasedness restriction, what is the optimal solution of the investigator?
The sample-splitting representation provides an objective criterion for unbiasedness.
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Since preferences are aligned, the investigator applies their subjective prior to min-
imize average risk among unbiased estimators. I characterize the resulting Bayes
estimator by the solution to prediction problems.

The investigator solves a variance-minimization problem over the regression ad-
justments from Lemma 1. If the investigator knew the potential outcomes, a set of
variance-minimizing regression adjustments would be given by the infeasible oracle
solutions

ȳi = (1− p)yi(1) + pyi(0),

∆ȳij =
(n0

n
yi(1) +

n1

n
yi(0)

)
︸ ︷︷ ︸

=¯̄yi

−
(n0

n
yj(1) +

n1

n
yj(0)

)
= ¯̄yi − ¯̄yj .

I establish that the respective Bayesian leave-one-out and leave-two-out posterior
expectations minimize average risk. The resulting estimator is a constrained Bayes
estimator in the sense of Wald (1950).

Theorem 2 (Solution of the investigator). An investigator with risk r ∈ R∗ and
prior π over Θ chooses the following unbiased Bayes estimators:

1. For a known treatment probability p,

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − Eπ[ȳi|z−i]).

2. For a fixed number n1 of treated units,

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − Eπ[∆ȳij |z−ij ]).

The theorem is non-trivial because one adjustment appears in the estimate for
multiple draws of the data. In particular, if two sample draws only differ in one unit,
then the adjustments to that unit are the same. Key to the proof (which I develop
in Appendix C) is solving a system of first-order conditions jointly for all potential
draws of the data.

While the objective unbiasedness restriction dictates sample splitting and guar-
antees preference alignment, the prior picks one suitable estimator that trades off
risk optimally between different unobserved states. If the prior assigns low proba-
bility to the realized set of potential outcomes, then the estimator is still unbiased,
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but may have high variance. In any case, the investigator wants to reveal her best
guess given prior knowledge.

Sample splitting guards not just against misaligned preferences, but also against
priors that are dogmatic in the treatment effect. From a Bayesian point of view,
we only use the prior information orthogonal to the treatment effect. Hence, even if
the investigator’s prior is very informative about the treatment effect, the estimator
will not reflect this ex-ante bias. The definition of investigator risk functions R∗

as mean-squared error with respect to some pseudo-target therefore plays a second
role. Alignment with respect to these preferences also implies robustness against
misspecification of priors in the direction of the treatment effect. Hence, wrong
preconceptions about treatment effects will not lead to systematic distortions in
estimates if we restrict researchers to unbiased estimators.

5.3 Complete Class and Estimation-Prediction Duality

Since there is generally no single best estimator for all values of the truth, we have
minimized average loss for some prior. If instead we consider admissible estimators
that are not dominated by any other estimator in a purely frequentist sense, the same
conclusions apply. Indeed, a duality result connects admissible unbiased estimation
and admissible prediction.

For finite support any admissible estimator is the limit of a Bayes estimator
that minimizes posterior loss given the data for some prior with full support (e.g.
Ferguson, 1967). I extend this complete-class argument to unbiased estimators by
applying it to the representation in Lemma 1.

Theorem 3 (Complete-class theorem for unbiased estimators). For any unbiased
estimator τ̂ of the sample-average treatment effect that is not dominated with respect
to variance, there is a converging sequence of priors (πt)

∞
t=1 with full support such

that τ̂ equals the limit of the respective estimators in Theorem 2. Conversely, for any
converging sequence of priors (πt)

∞
t=1 that put positive weight on every state θ ∈ Θ,

the limit of the estimators is admissible among unbiased estimators.

The individual increments

φi(z−i) = Eπ[ȳi|z−i],

φi;j(z−ij) = Eπ[¯̄yi|z−ij ]
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solve a leave-one-out and leave-two-out out-of-sample prediction problem, respec-
tively. (The adjustment φij(z−ij) is obtained as φij(z−ij) = φi;j(z−ij) − φj;i(z−ij).)
Indeed, φi and φi;j minimize the average of the forecast risk

riθ(ŷi) = Eθ[w(di)(ŷi − yi)2] (2)

given the respective data and the prior π. The weights

w(di) =

(
(di − p)
p(1− p)

)2

, w(di) =

(
n(din− n1)

n1n0

)2

put higher emphasis on the smaller of the the treatment and control groups.15

I apply the complete-class logic to both sides of the problem to obtain a one-to-
many correspondence between unbiased admissible estimation and admissible pre-
diction.16 The relationship is not one-to-one because different prediction solutions
may correspond to the same estimator.

Corollary 5.1 (Estimation-prediction duality). Any admissible unbiased estimator
can be expressed in terms of a jointly admissible solution to the prediction problems
with risks riθ. Conversely, any jointly admissible solution to the prediction problems
defined by risks riθ yields an admissible unbiased estimator of the sample-average
treatment effect via the representation in Lemma 1. (Here, by joint admissibility
I mean that the solutions to all prediction problems are the limits of average-risk
minimizers with respect to the same sequence of priors.)

While the estimator itself is unbiased, the implicit prediction solution of a low-
variance estimator will typically have bias.

5.4 Constrained Cross-Fold Solutions

It may be infeasible to estimate all regression adjustments optimally. Mimicking
machine-learning practice, one could instead partition the sample into K folds and
estimate adjustments in one fold jointly from the units in all other folds. The result-
ing estimator resembles Wager et al.’s (2016) “cross-estimation” and Chernozhukov
et al.’s (2017a) “cross-fitting” estimator.

15This mirrors Lin’s (2013) “tyranny of the minority” estimator, which puts similar weights into
a least-squares regression.

16Wager et al. (2016) in an asymptotic framework using a similar sample-splitting construction
note that “the precision of the treatment effect estimates obtained by such regression adjustments
depends only on the prediction risk of the fitted regression adjustment.”
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Remark 5.1 (Exact K-fold cross-fitting). For a partition of the sample

{1, . . . , n} =

K⋃
k=1

I(k)

into K folds with n(k) ≥ 2 units each of which n(k)
1 > 0 treated and n(k)

0 > 0 untreated,
the estimator

τ̂(z) =
1

n

K∑
k=1

n(k)
∑
i∈I(k)

din
(k) − n(k)

1

n
(k)
1 n

(k)
0

(
yi − φ(k)

i (z−I(k))
)

is unbiased for the sample-average treatment effect τ conditional on (I(k))Kk=1 and
(n

(k)
1 )Kk=1 under either randomization. The investigator obtains their constrained

optimal (Bayes) τ̂ among these estimators at

φ
(k)
i (z−I(k)) = Eπ[n

(k)
0 yi(1) + n

(k)
1 yi(0)|z−I(k) ]/n(k).

Randomization could be within folds or folds could be chosen after overall ran-
domization. If K divides n1 and n0, we achieve perfect balance by stratifying folds
by treatment (or the other way around), Kn(k)

1 = n1 and Kn(k)
0 = n0.

In particular, the optimal regression adjustments are predictions even when not
all adjustments are estimated. Indeed, φ(k)

i minimizes average risk riθ in (2) with
weight

w
(k)
i (di) =

(
n(k)(din

(k) − n(k)
1 )

n
(k)
1 n

(k)
0

)2

given data from other folds and the prior π. An unbiased estimator of the risk is the
average loss on fold k.

5.5 Machine Learning Algorithms as Agents

When high-dimensional unit characteristics are available, machine learning offers
a solution to the prediction problems implicit to unbiased estimation. Effectively,
machine learning engages in automated specification searches to find a model that
predicts well. I take a principal-agent perspective on machine-learning algorithms to
provide a formal embedding. The investigator as principal delegates to the machine-
learning agent. Through sample splitting, there is no misalignment of preferences
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between the investigator and the machine-learning agent provided the latter mini-
mizes prediction risk, and the investigator achieves a second-best estimation solution
from first-best predictions.

For randomly sampled units, the implicit prediction solutions forecast outcomes
from characteristics. If units are draw according to the population distribution
(yi(1), yi(0), xi)

iid∼ P that includes characteristics xi, then

yi(1), yi(0)|x1, . . . , xn ∼ P(xi).

Increments φi(yTi , dTi) fitted on Ti ⊆ {1, . . . , n}\{i} minimize expected forecast risk

E[riθ(ŷi)|x1, . . . , xn, yTi , dTi ] = E[Eθ[w(di)(ŷi − yi)2|yi(1), yi(0)]|xi]

over ŷi ∈ R. Writing ŷi = f̂i(xi) with f̂i : X → R a function of training data
(yTi , dTi , xTi) evaluated on the test point xi, f̂i solves the prediction problem

Li(f̂) = E[w(di)(f̂(xi)− yi)2|xi]→ min
f̂
. (3)

Here, I conflate the population distribution P with the sampling process to describe
the distribution of observable data.

Supervised machine learning offers non-parametric solutions of out-of-sample pre-
diction problems like (3) that are particularly suitable for high-dimensional charac-
teristics xi. Since the test point (yi, di, xi) follows the same distribution as the
training sample Ti, sample-splitting techniques within the training sample allow for
specification searches (in the form of model regularization and combination) to ob-
tain good average predictions at the test point. Furthermore, the realized loss at i
is an unbiased estimate of Li(f̂i).

I capture machine learning as an agent who minimizes average forecast risk for
weighted loss w(di)(f̂(xi) − yi)2. The machine-learning agent’s choice f̂i may have
complex structure that eludes causal interpretation and its parameters may not even
be stable approximations of correlation patterns (Mullainathan and Spiess, 2017).
However, the investigator as principal cares only about the forecast properties of the
agent’s solution.

Provided that the agent (approximately) minimizes risk, their choices are (ap-
proximately) aligned with the preferences of the investigator. There is no moral
hazard from unobserved modeling decisions in the delegation of the prediction task
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from investigator to machine-learning agent. The machine-learning delegation task
can be realized as a contract that pays the provider of the machine-learning solu-
tion according to the observed performance of prediction functions f̂i on test points
(yi, di, xi).

Crucially, sample splitting guards against prediction mistakes. Even when the
specific prediction method does not minimize forecast risk or makes systematic mis-
takes, the resulting estimator is still unbiased. Worse predictions can lead to worse
estimation performance, but only through variance.

6 Pre-Analysis Plans and Ex-Post Analysis

There are two ways in which we can guarantee that the investigator delivers an
unbiased estimator. In the previous section, I derived a representation of unbiased
estimators that require that the investigator’s estimator only uses one part of the
sample when constructing regression adjustments for another part. Since the inves-
tigator will ultimately work with all of the data, this condition cannot be verified
ex-post, but has to be guaranteed by ex-ante commitment. One way to guarantee
that the estimator fulfills this condition is to require that the investigator commits
to the construction of all regression adjustments before she has seen any of the data.

In this section, I consider instead that the investigator commits to how she will
split and distribute the data to one or multiple researchers who have not yet accessed
the data. Detailed commitment may be infeasible for methods that require active
guidance by the researcher, impractical for very complex algorithms, or inefficient
when some prior uncertainty is resolved only after the initial commitment. I there-
fore consider sample-splitting schemes that leave some or all regression adjustments
unspecified, and instead delegate their estimation. Delegating to one researcher can
already improve over simple pre-specified estimators. Delegating to two researchers
attains semi-parametric efficiency without any commitment beyond sample splitting.

6.1 Automated vs Human Specification Searches

The results in this article imply a constructive characterization of robust yet flexible
pre-analysis plans. The two ways of ensuring unbiasedness correspond to two differ-
ent types of specification searches. The first way in which we can be flexible while
also ensuring unbiasedness is that the investigator commits in her pre-analysis plan
which algorithm she will use to construct regression adjustments. This algorithm
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then engages in automated specification searches to solve the prediction problems I
have shown to be equivalent to unbiased estimation.

The second way in which specification searches remain possible applies when
the investigator splits the sample and distributes it to one or multiple researchers.
Then each researcher can search through specifications using his full subsample and
does not have to commit to an empirical strategy ex ante. As long as the investi-
gator commits to how she will distribute the sample and use the output from the
researchers, and follows the procedures I characterize below, the resulting estimator
is again guaranteed to be unbiased.

Automated and human specification searches can be combined to ensure precise
and unbiased estimation under logistical constraints. An investigator who analyzes
the data by herself can split the sample into two, apply a pre-specified algorithm
to the first half of the data, and search through specifications by hand only in the
second half.

6.2 Unbiased Estimators without Full Commitment

I show that the class of unbiased estimators includes protocols that do not require
full pre-commitment, but leave additional degrees of freedom open. The investigator
commits to an estimator that includes flexible inputs by one or multiple researchers.
Each researcher obtains access to a subset of the data, but does not have to pre-
commit to their output.

Definition 2 (K-distribution contract). A K-distribution contract τ̂Φ distributes
data z = (y, d) ∈ (Y × {0, 1})n = Z to K researchers. Researcher k receives data
gk(z) ∈ Ak and returns the intermediate output φ̂k(gk(z)) ∈ Bk. The estimate is

τ̂Φ((φ̂k)
K
k=1; z) = Φ((φ̂k(gk(z))

K
k=1; z).

The investigator chooses the functions gk (from data in Z to researcher input in Ak)
and Φ (from the researcher outputs in×K

k=1Bk and data in Z to estimates in R)
before accessing the data.

While the investigator still commits which part of the data individual researchers
receive and how their choices and the data form an overall estimate, the individual
researchers’ actions are not pre-specified. From my results in the previous section, I
obtain a full characterization ofK-distribution contracts that are unbiased no matter
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the choices of the researchers. Since the resulting estimators are always unbiased, the
preferences of the researchers, the investigator, and the designer over these contracts
are aligned provided that the investigator and the researchers all minimize average
risk for risk functions in R∗ and have the same prior π.

Lemma 6.1 (Characterization of unbiasedK-distribution contracts). AK-distribution
contract τ̂Φ is unbiased for the sample-average treatment effect τθ for any conformable
researcher input (φ̂k)

K
k=1 if and only if:

1. For known treatment probability p, there exist regression adjustments (φi :

(×k∈Ci Bk)× (Y × {0, 1})n−1 → R)ni=1 such that

τ̂Φ((φ̂k)
K
k=1; z) =

1

n

n∑
i=1

di − p
p(1− p)

(yi − φi((φ̂k(gk(z))k∈Ci ; z−i))

for Ci = {k; gk(z) = g̃(z−i) for some g̃}.

2. For fixed number n1 of treated units, there exist regression adjustments (φij :

(×k∈Cij Bk)× (Y × {0, 1})n−2 → R)i<j such that

τ̂Φ((φ̂k)
K
k=1; z) =

1

n1n0

∑
i<j

(di − dj)(yi − yj − φij((φ̂k(gk(z))k∈Cij ; z−ij)),

for Cij = {k; gk(z) = g̃(z−ij) for some g̃}.

In other words, the regression adjustments of a given unit are only controlled by
the choices of researchers who do not have access to data from that unit. The sets
Ci, Cij are thus the set of researchers who have control over regression adjustments
φi, φij . For the special caseK = 1, this construction resembles proposals to use hold-
out sets to avoid false positives in multiple testing (Dahl et al., 2008; Fafchamps and
Labonne, 2016; Anderson and Magruder, 2017). For general K, the construction
resembles K-fold cross-validation. Indeed, we obtain a particularly simple form if
we restrict sample distribution to K-fold partitions.

Corollary 1 (Characterization of unbiased K-fold distribution contracts). For K
disjoint folds Ik ⊆ {1, . . . , n} with projections gk : (y, d) = z 7→ z−Ik = (yi, di)i 6=Ik ,
a K-distribution contract τ̂Φ is unbiased if and only if:

1. For a known treatment probability p,there exist a fixed unbiased estimator τ̂0(z)
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and regression adjustment mappings (Φk)
K
k=1 such that

τ̂Φ((φ̂k)
K
k=1; z) = τ̂0(z)− 1

n

K∑
k=1

∑
i∈Ik

di − p
p(1− p)

φki (z−i)

where (φki )i∈Ik = Φk(φ̂k(z−Ik)).

2. For a fixed number n1 of treated units, there exist a fixed unbiased estimator
τ̂0(z) and regression adjustment mappings (Φk)

K
k=1 such that

τ̂Φ((φ̂k)
K
k=1; z) = τ̂0(z)− 1

n1n0

K∑
k=1

∑
{i<j}⊆Ik

(di − dj)φkij(z−ij),

where (φki )i∈Ik = Φk(φ̂k(z−Ik)).

K-fold distribution contracts are similar to K-fold cross-fitting from Remark 5.1,
but different in terms of motivation and more flexible in terms of application. K-fold
distribution is motivated by ensuring unbiasedness, not by computational limita-
tions. While K-fold cross-fitting is contained as the special case where a researcher
determines the regression adjustments for all units in the target fold directly from
their training data (that is, no data from the target fold is used to adjust any of
the units in that fold), K-fold distribution contracts also contain solutions that use
additional data without bias. Indeed, for the case of known p, say, if regression
adjustments take the form φki (λk; z−i) with a pre-determined function φki (·; ·) and
some tuning parameter λk, then the adjustments can be be a function of all the data
in z−i as long as the tuning parameter λk is fitted only on the other folds.17

6.3 Hybrid Pre-Analysis Plans

I apply the previous result to show that a simple pre-analysis plan is dominated by a
hybrid pre-analysis plan that allows for additional discretion after part of the data is
revealed. The investigator fixes some regression adjustment, but can modify others
after access to a subset of the sample. Since sample splitting ensures preference

17 This idea can be applied to the post-LASSO (Belloni et al., 2013) after selection on the training
sample. Unlike the cross-fitted LASSO, the post-selection fitting step can include the full sample
(provided all regression adjustments are fitted using a leave-one- or leave-two-out construction).
Furthermore, the selection step can include researcher intervention that has not been pre-specified.
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alignment, the hybrid estimator will dominate if the ex-post analysis permits better
implementation of prior information.

I now assume that the investigator’s prior π is only realized after the data is
available. Before the data is available, the investigator has a prior ηI over π. I think
of ηI as a crude approximation to π. A simple ex-ante prior ηI could come from
high costs of fully writing down or automating the way in which the investigator
translates prior information and data into predictions of potential outcomes. The
ex-post prior π could also represent updated beliefs after the pre-analysis plan has
been filed. In both cases, however, the difference does not represent the information
in the collected data itself, which will be incorporated in the posterior distribution
instead.

Anderson and Magruder (2017) propose a hybrid pre-analysis plan for multiple
testing. The investigator pre-specifies some hypothesis they will test, and then selects
additional hypotheses from a training sample. The additional hypotheses are only
evaluated on the remaining hold-out sample. I adopt their proposal to my estimation
setting.

Definition 6.1 (Hybrid pre-analysis plan). A hybrid pre-analysis plan is a 1-fold
distribution contract, i.e. an estimator

τ̂Φ(φ̂; z) = Φ(φ̂(zT ); z)

that pre-specifies a mapping Φ from ex-post researcher input φ̂(zT ) and realized sam-
ple data z to an estimate of the sample-average treatment effect. The researcher
(which here could be the investigator herself) obtains access to training data T ⊆
{1, . . . , n} before the final estimator is formed.

I assume that the investigator must still pre-commit to an unbiased estimator, so
Corollary 1 for K = 1 fully characterizes the plans available to the investigator. In
these sample-splitting plans, the choices of the researcher after gaining access to the
training sample are fully aligned with the intentions of the investigator according
to their updated prior. The investigator pre-commits all adjustments in the train-
ing sample according to ηI , while the researcher chooses the remaining regression
adjustments according to π and their training data.

Theorem 6.1 (Hybrid pre-analysis plan dominates rigid pre-analysis plan). Assume
that investigator and researcher have risk functions in R∗. The optimal unbiased pre-
committed estimator τ̂pre is strictly dominated by an unbiased hybrid pre-analysis
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plan with respect to average variance, i.e. the hybrid plan is as least as precise on
average over any ex-ante prior ηI and strictly better for many non-trivial ex-ante
priors ηI .

Since the researcher’s and investigator’s preference over unbiased estimators is
fully aligned with the designer’s goal, there is no preference misalignment and the
variance captures all of their risk functions.

Remark 6.1 (Optimal hybrid pre-analysis plan). The dominating hybrid plan is:

1. For known treatment probability p, the researcher chooses regression adjust-
ments (φposti : (Y × {0, 1})n−1 → R)i/∈T = φ̂(zT ) to obtain

τ̂hybrid(φ̂; z) = τ̂pre(z)− 1

n

∑
i/∈T

di − p
p(1− p)

φposti (z−i)

where 1 ≤ |T | ≤ n− 1.

2. For fixed number n1 of treated units, the researcher chooses adjustments (φpostij :

(Y × {0, 1})n−2 → R){i<j}∩T =∅ = φ̂(zT ) to obtain

τ̂hybrid(φ̂; z) = τ̂pre(z)− 1

n1n0

∑
{i<j}∩T =∅

(di − dj) φpostij (z−ij)

where 1 ≤ |T | ≤ n− 2.

In both cases, the investigator commits to the training sample T ⊆ {1, . . . , n} and
the unbiased estimator τ̂pre : Z → R.

The optimal ex-post adjustments modify the implicit adjustments of the ex-ante
estimator to match the solution from Theorem 2 on the relevant subset, i.e. they
solve an out-of-sample prediction problem.

6.4 Many-Researcher Delegation

The hybrid pre-analysis plan is itself dominated by a plan that distributes the data
to multiple researchers. If a single researcher has access to the full dataset before
committing their estimator, bias can return even if the researcher represents their
estimate by regression adjustments. Distribution to multiple researchers reduces
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inefficiency without introducing misalignment. Even when ex-ante commitment be-
yond a trivial estimator is infeasible or undesirable, distribution between at least
two researchers can produce an ex-post desirable estimator.

Remark 6.2. Assume that the investigator and researchers all have risk functions in
R∗, and that the researchers all share the same (ex-post) prior π. Then an optimal
unbiased K-distribution contract is dominated by an unbiased K + 1-distribution
contract in the sense of Theorem 6.1.

I now consider standard large-sample efficiency criteria for the estimation of the
population-average treatment effect. There is no unique variance-minimal solution in
finite samples, as the class of admissible estimators is large. In the large-sample limit,
however, essentially all admissible estimators have approximately equal performance,
and coordination between researchers with different (non-dogmatic) priors is resolved
by a common understanding of the truth.

Under random sampling of units, the semi-parametric efficiency bound of Hahn
(1998) is achieved at oracle prediction adjustments. For (yi(1), yi(0), xi)

iid∼ P with
fixed probability p of treatment, an infeasible estimator of the population average
treatment effect τ is

τ̂P(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − E[ȳi|xi])

where the oracle regression adjustments are optimal given knowledge of P. While
we will not generally be able to achieve the variance of τ̂P, under assumptions we
can achieve a variance that is asymptotically equivalent (i.e. Var(τ̂)/Var(τ̂P) → 1

as n→∞).

Remark 6.3 (Semi-parametric efficiency). If researchers use prediction algorithms
(An : Z → RX , z 7→ f̂n)∞n=1 with

E[(f̂n(xi)− E[ȳi|xi])2]→ 0

as n → ∞, then delegation to two researchers with risk functions in R∗ (who each
obtain access to half of the data, say) without further commitment achieves both
finite-sample unbiased estimation of τθ, and large-sample semi-parametric efficient
estimation of τ for the semi-parametric efficiency bound of Hahn (1998).
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In other words, semi-parametric efficiency is achieved from distribution of the
data to at least two independent researchers with risk-consistent predictors. Data
distribution ensures that there is no misalignment.

Conclusion

By taking a mechanism-design approach to econometrics, I account for misaligned
researcher incentives in causal inference. I motivate why and how we should pre-
commit our empirical strategies, and demonstrate that there exist flexible pre-
analysis plans that allow for exploratory data analysis and machine learning without
leaving room for biases. In particular, I characterize all unbiased estimators of an
average treatment effect as sample-splitting procedures that permit beneficial spec-
ification searches.

My results shed light on the role of bias and variance in treatment-effect esti-
mation from experimental data. Allowing for bias can reduce the variance and thus
improve precision. But when incentives are misaligned, giving a researcher the free-
dom to choose the bias may, in fact, reduce precision. However, once we restrict
the researcher to unbiased estimators, there will again be a bias-variance tradeoff in
the nuisance parameters associated with the control variables. I have shown in this
article that unbiased estimation of a treatment effect in an experiment is equivalent
to a set or prediction tasks. Inside these tasks, some bias in return for a substan-
tial variance reduction can improve prediction quality. Better predictions in turn
translate into lower variance of the unbiased estimator.

In related work, I show that under additional parametric assumptions standard
treatment-effect estimators are dominated because shrinkage can reduce variance
without introducing bias. In a linear model with homoscedastic, Normal noise and
exogenous treatment, the usual linear least-squares estimator for the treatment effect
is dominated provided that there are at least three Normally-distributed control
variables (Spiess, 2017b).18 In that case, I reduce variance without introducing bias
by James and Stein (1961) shrinkage in the underlying prediction problem.19

18The usual linear least-squares estimator is, by Gauss-Markov, still variance-minimal among
conditionally unbiased estimators. However, once we integrate over the distribution of control
variables (and if these are orthogonal to treatment), I show that there is an unbiased estimator
with lower variance.

19In the nonparametric setting in this paper and the Normal-linear setting in Spiess (2017b),
unbiased estimation reduces to prediction problems. The results are connected because they both
stem from invariances that characterize the distributions - in the case of this paper reflections and
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I am working on extending my mechanism-design approach to other estimation
tasks in experimental or quasi-experimental data. Applications include effects on
endogenously chosen subgroups, heterogeneous treatment effects, treatment effects
under optimal assignment, and tests for effects on multiple outcome variables. In
each case, I conjecture that my approach can motivate a design restriction by its
preference alignment property, yield a representation of the resulting estimators as
sample-splitting procedures, and suggest a characterization of optimal mechanisms
and second-best pre-analysis plans.

One possible direction to pursue is to extend the approach of this article to
cases where unbiased estimators are generally unavailable. In instrumental-variable
estimation, unbiased estimation is possible under sign restrictions on the first stage
(Andrews and Armstrong, 2017), but generally infeasible when the parameter space
is unrestricted (Hirano and Porter, 2015). Still, when there are many instruments,
we can improve estimation by providing better solutions to the first-stage prediction
problem implicit to the two-stage linear IV model. For example, shrinkage in the
first stage reduces bias relative to the standard two-stage least-squares estimator
(Spiess, 2017a). This finding raises the question how the delegation of the first-stage
prediction problem can be realized in a way that aligns researcher preferences.
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Appendix

This appendix builds up to the proofs of the main results (Theorem 1, Lemma 1,
Theorem 2). Additional proofs and results I collect in the Supplementary Appendix.
Throughout, I restate the relevant claims from the main paper with their original
numbering. I prepend the letter of the respective section to additional and auxiliary
results.

A Minimax Optimality of Fixed Bias

Lemma 4.1 (Unbiasedness aligns estimation). If the investigator has risk from R∗

then the investigator will choose from the unbiased estimators C∗ according to the
designer’s preferences.

Proof of Lemma 4.1. Take any investigator risk function rI ∈ R∗, unbiased estima-
tor τ̂ ∈ C∗, and prior π ∈ ∆(Θ). (∆(Θ) denotes the unit |θ| − 1-simplex in RΘ.)
Then, the designer’s average risk is

Eπ[rDθ (τ̂)]

rI∈R∗
= Eπ[(τ̂(z)− τ̃θ)2]

= Eπ[((τ̂(z)− Eθ[τ̂(z)])− (Eθ[τ̂(z)]− τ̃θ))2]

= Eπ[(τ̂(z)− Eθ[τ̂(z)])2] + Eπ[(Eθ[τ̂(z)]− τ̃θ)2]

τ̂∈C∗
= Eπ[Varθ(τ̂(z))] + Eπ[(τθ − τ̃θ)2]

by a bias-variance decomposition. (I conflate Pθ into Pπ.) Since Eπ[(τθ − τ̃θ)2] is
constant with respect to τ̂ and Eπ[Varθ(τ̂(z))] does not vary with τ̃ , the estimation
target τ̃ does not affect the choice of the estimator from C∗. Hence, choices are as if
τ̃ = τ . The investigator chooses from C∗ according to the designer’s risk rD.

Theorem 1 (Fixed bias is minimax optimal). Write ∆∗(Θ) for all distributions over
Θ with full support. For every hyperprior η with support within ∆∗(Θ) there is a set
of biases βη : Θ→ R such that the fixed-bias restriction

Cη = {τ̂ : Z → R;Eθ[τ̂ ] = τθ + βηθ }
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is a minimax optimal mechanism in the sense of Definition 1, i.e.

Cη ∈ arg min
C

sup
rI∈R∗

Eη
[
rDη

(
arg min
τ̂∈C

Eπ[rIθ(τ̂)]

)]
.

Proof of Theorem 1. I apply the strategy from Theorem 1 in Frankel (2014) to es-
tablish that the unbiasedness restriction yields a minimax (maxmin in utility terms)
optimal mechanism. Relative to the quadratic-loss constant-bias setup in Frankel
(2014), average risk yields weighted sums where the prior changes weights and the
bias changes across decisions (sample draws) and states (posterior expectations).
Rather than using Lemma 3 on quadratic-loss constant-bias utilities in Frankel (2014)
as stated there, I therefore appeal directly to the logic of his more general Theorem 1,
which I extend to deal with the non-compact type and action spaces in my applica-
tion.

The agent’s (investigator’s) actions are the estimates τ̂(z) at all N = (2|Y|)n

sample points z ∈ Z. (I assume that the covariates x are already known when the
investigator commits to their estimator.) The state that only the agent observes is
the investigator’s prior π ∈ ∆(Θ). π is drawn from the (hyper-)prior η.

In the parlance of Frankel (2014), I consider the Φ-moment mechanisms where
the agent chooses from estimators

Cβ = {τ̂ : Z → R;Eθ[τ̂ ] = τθ + βθ∀θ ∈ Θ}

for a set of fixed biases β ∈ RΘ. (Each expectation – a weighted sum over actions
τ̂(z) – is a map from actions to real numbers.) To show that this mechanism is
maxmin optimal for some choice of β, I establish that:

1. Any feasible such Φ-moment mechanism (i.e. any bias vector β with Cβ 6= ∅)
induces aligned delegation over R∗, that is, subject to the restriction τ̂ ∈ Cβ
agents of all risk types rI ∈ R∗ choose as if they were of risk type rD.

2. R∗ is Φ-rich, that is, for any mechanism there exists some β ∈ RΘ and a se-
quence of risk types (rIk)∞k=1 ∈ (R∗)N such that for all realized π ∈ ∆∗(Θ) and
all corresponding sequences (τ̂k)

∞
k=1 of chosen estimators, limk→∞ Eθ[τ̂k(z)] =

τθ + βθ for all θ in the support of π. (Unlike Frankel (2014) I do not explicitly
consider mixed strategies since randomized estimators are dominated in my
setting.)
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Similar to Frankel’s (2014) Theorem 1, the restriction Cβ is then minimax optimal
provided that β is chosen to minimize the designer’s average risk, for some distribu-
tion (hyperprior) η over π. I will develop this deduction below for my specific case
(in which type and action spaces are not compact) once I have established aligned
delegation and richness.

1. Aligned delegation. For β ∈ RΘ such that Cβ 6= ∅, the average over risk
rI ∈ R∗ for an estimator τ̂ ∈ Cβ over the prior π ∈ ∆(Θ) is

EπrIθ(τ̂) = Eπ[Varθ(τ̂(z))] + Eπ[(τθ + βθ − τ̃θ)2]

as in the proof of Lemma 4.1. Hence, choices do not vary with the risk type of the
investigator and are as if the investigator shared the designer’s risk function rD.

2. Richness. For some arbitrary, but fixed mechanism, our goal is to find a
vector of biases β̄ and a risk sequence rI1 , rI2 , . . . such that biases of mechanism
outcomes along this sequence always converge to β̄. I first justify assumptions on
the mechanism, then pick a bias vector β̄, and finally construct a suitable sequence
of risk types that ensures bias convergence.

For some conformal mechanism, consider the set C ⊆ RZ of estimators τ̂ that
are outcomes for some investigator risk function rI ∈ R∗ and prior π in the support
of η. Note that the outcomes of the mechanism are the investigator choices

τ̂π(rI) ∈ arg min
τ̂∈C

EπrIθ(τ̂) (4)

where by assumption ties are broken in favor of the designer. I first show that C in
(4) is wlog closed. Since the minimizers are already included in C, taking the closure
of C does not change investigator risk at their optimal choices. Replacing C by its
closure thus does not affect investigator risk at choices (4), and can only improve
outcomes for the designer, since additional ties are broken in their favor. For the
analysis of minimax optimal mechanisms, we can therefore assume wlog that C is
closed.

I first assume that C is also bounded. Define the set

D = {θ 7→ Eθ[τ̂(z)]; τ̂ ∈ C} ⊆ RΘ
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of vectors of expectations achieved by estimators in C. By linearity of expectation,
D is wlog compact by the above reasoning. Fix some ordering θ1, . . . , θJ of Θ (where
J = |Θ|). Let δ0 be the maximal element in D with respect to the corresponding
lexicographic ordering (so that, in particular, δ0

θ1
≥ δθ1 for all δ ∈ D). For every

h ∈ {2, . . . , J}, there exists a function fh : R>0 → R>0 such that for all ε > 0

δ ∈ D,
h−1∑
j=1

|δθj − δ
0
θj
| < fh(ε) ⇒ δθh < δ0

θh
+ ε. (5)

Indeed, assume not, then there must be some h and some ε > 0 such that for every
k ∈ N there exists a δk ∈ D with

∑h−1
j=1 |δνθj | < 1/k and δkθh ≥ δ0

θj
+ ε. Since D is

compact, δk must have a convergent subsequence with limit δε ∈ D. But δεθj = δ0
θj

for j < h and δεθh ≥ δ
0
θh

+ε > δ0
θh
, contradicting that δ0 is maximal in D with respect

to the lexicographic order. Hence there exists such fh, and we can assume wlog fh(ε)
ε

is monotonically increasing in ε > 0 (otherwise we can choose an fh that is smaller
for small values of ε).

Given the target δ0 ∈ D and the functions fh, h ≥ 2, I construct a sequence of
risk functions rIk such that the expectation of the corresponding investigator choices
converges to δ0 for all π ∈ ∆∗(Θ). Concretely, for k ∈ N define αk ∈ RΘ recursively
by

αkθJ = k αkθj = k/min
h>j

fh(1/αkθh), j < J

and consider the sequence of investigator risk functions

rIkθ (τ̂) = Eθ[(τ̂(z)− τ̃kθ )2], τ̃kθj = δ0
θj

+ αkθj

which falls within R∗.
For the case of bounded C and some arbitrary, but fixed π ∈ ∆∗(Θ), it remains

to show that the expectation of τ̂π(rIk) converges to δ0. Write δkθ = Eθ τ̂π(rIk).
Assume for contradiction that δkθ does not converge to δ0

θ . Since also δkθ ∈ D for
all k and D compact, (δkθ )∞k=1 must have a converging subsequence (δk`θ )∞h=1 with
δk` → δ1 ∈ D \ {δ0} as h→∞. The average investigator loss along the sequence is

Eπr
Ik`
θ (τ̂π(rIk` )) = Eπ Varθ(τ̂π(rIk` ))︸ ︷︷ ︸

≤const. (C bounded)

+Eπ(δk`θ − (δ0
θ + αk`θ ))2. (6)
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Note that an estimator τ̂0 with expectation δ0 ∈ D would also have been available
in C by definition of D, and the difference in risk between the chosen subsequence
and the alternative is

∆` = Eπr
Ik`
θ (τ̂π(rIk` ))− Eπr

Ik`
θ (τ̂0)

(6)
= Eπ(δk`θ − (δ0

θ + αk`θ ))2 − Eπ(αk`θ )2 +O(1)

= Eπ (δk`θ − δ
0
θ)

2︸ ︷︷ ︸
→(δ1

θ−δ
0
θ)2

−2Eπ(δk`θ − δ
0
θ)α

k`
θ +O(1)

= −2
J∑
j=1

π(θj)α
k`
θj

(δk`θj − δ
0
θj

) +O(1).

Denote by h the smallest index of for which δ0
θh
6= δ1

θh
. Since δ0 is maximal with

respect to the lexicographic ordering of D and δ1 also in D, we must have δ0
θh
−δ1

θh
>

0. By revealed preference and since αkθj+1
= o(αkθj ) for all j, it follows that

0 ≥ ∆`/α
k`
θh

= −2

h−1∑
j=1

π(θj)
αk`θj

αk`θh

(δk`θj − δ
0
θj

)− 2π(θh)(δ1
θh
− δ0

θh
) + o(1).

In particular, for ε = π(θh)(δ0
θh
− δ1

θh
),

lim inf
`→∞

h−1∑
j=1

π(θj)
αk`θj

αk`θh

(δk`θj − δ
0
θj

)︸ ︷︷ ︸
=a`j

≥ ε > 0. (7)

Hence there must exists some h∗ and a subsequence `s such that

a`sh∗ → ν ∈ (0,∞], lim sup
s→∞

a`sj

a`sh∗
≤ 1 ∀j < h. (8)

(That is, a`sh∗ is a maximal sequence within that subsequence, for a suitable asymp-
totic notion of maximality; it is not unique, but an instance can be constructed
from iterated subsequences.) For simplicity, I write ks = k`s . I assume wlog that
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δksθh∗ − δ
0
θj
> 0 for all s. By (6),

h∗−1∑
j=1

|δksθj − δ
0
θj
| ≥ fh∗(δksθh∗ − δ

0
θh∗

),

so there must exist some j∗ < h∗ and a refinement of the subsequence along which
|δksθj∗ − δ

0
θj∗
| ≥ fh∗(δksθh∗ − δ

0
θh∗

)/(h∗ − 1). Note that

π(θj∗)
αksθj∗

αksθh

|δksθj∗ − δ
0
θj∗
|

π(θh∗)
αksθh∗

αksθh

(δksθh∗ − δ
0
θh∗

)

≥ π(θj∗)

π(θh∗)(h∗ − 1)

αksθj∗

αksθh∗

fh∗(δ
ks
θh∗
− δ0

θh∗
)

δksθh∗ − δ
0
θh∗

.

By (8) there exists some ν0 ∈ (0,∞) such that a`sh∗ ≥ ν0 for all large s. By the
definition of a`h∗ we find, again for large s, that

δksθh∗ − δ
0
θh∗

=
a`sh∗

π(θh∗)

αksθh
αksθh∗

≥ ν0

π(θh∗)

αksθh
αksθh∗

.

By monotonicty of fh∗ (ε)
ε therefore for large s

π(θj∗)
αksθj∗

αksθh

|δksθj∗ − δ
0
θj∗
|

π(θh∗)
αksθh∗

αksθh

(δksθh∗ − δ
0
θh∗

)

≥ π(θj∗)

π(θh∗)(h∗ − 1)

αksθj∗

αksθh∗

fh∗

(
ν0

π(θh∗ )

αksθh
αksθh∗

)
ν0

π(θh∗ )

αksθh
αksθh∗

.

By construction of the rates αkθ , we have that for every triple j∗ < h∗ < h and every
constant c > 0 and all large k

αkθj∗

αkθh
fh∗

(
c
αkθh
αkθh∗

)
≥
αkθj∗

αkθJ
fh∗

(
c
αkθJ
αkθh∗

)
=
αkθj∗

k
fh∗

(
ck

αkθh∗

)

≥ cαkθj∗fh∗
(

1

αkθh∗

)
≥ ck →∞.
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It follows that

π(θj∗)
αksθj∗

αksθh

|δksθj∗ − δ
0
θj∗
|

π(θh∗)
αksθh∗

αksθh

(δksθh∗ − δ
0
θh∗

)

→∞.

By (8), δksθj∗ − δ
0
θj∗

< 0 for all but at most finitely many s. Hence a`sj∗/a
`s
h∗ → −∞,

and thus
∑h−1

j=1 a
`s
j → −∞, contradicting (7). Therefore δ1 = δ0.

Consider now the case when C is unbounded. First, if C is unbounded but B is
still bounded (and thus wlog compact by linearity of the expectation projection),
then the same argument as above goes through since there is always an estimator
with finite variance and expectation δ0 available (and the investigator minimizes
variance given expectation), so unbounded variance along the investigator path can
only make the choice with expectation δ0 more attractive.

Second, if B is also unbounded, then C cannot be minimax optimal. Since B is
unbounded, it must contain a sequence δk ∈ B with ‖δk‖ diverging. The projection
of δk on the unit sphere towards the origin must contain a converging subsequence
with limit v where ‖v‖ = 1. Consider a sequence of investigators with τ̃k = v along
the ray defined by the direction of this cluster point. One, if the average variance
along the sequence of investigator choices is unbounded, then so is the average risk
of the designer. Two, if the average variance along the sequence of investigator
choices is bounded, then the bias diverges and average risk of the designer is again
unbounded. Indeed, I show that it is not possible that both average variance and
average expectation remain bounded along the ray. If the expectation vector Eθ[τ̂(z)]

along that sequence of investigators remains bounded, pick a point arbitrarily close
to the ray that falls outside that bound. (Such a point exists by construction of
v.) As investigator preference moves along the ray, the gain in average investigator
risk from moving to that point outweigh any cost in terms of variance since the
marginal cost of being off the expectation target only increases, while the variance
cost remains bounded. Hence, the bias cannot remain bounded and the average risk
of the designer diverges.

We therefore have that for any π ∈ ∆∗(Θ) the bias of investigator choices along
the sequence rIk converges to β̄θ = δ0

θ − τθ for all θ ∈ Θ.
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Proof of minimax optimality. Given any mechanism, by richness there exists
a sequence of investigator risk functions rIk in R∗ and a bias vector β̄ such that
Eθ[τ̂π(rIk)] − τθ → β̄θ for all π ∈ ∆∗(Θ) and all θ ∈ Θ. The expected average
designer’s risk along this sequence is

Eη[(τ̂π(rIk)− τθ)2] = Eη Varθ(τ̂π(rIk)) + Eη (Eθ[τ̂π(rIk)]− τθ)2︸ ︷︷ ︸
→β̄2

θ∀θ∈Θ,π∈∆∗(Θ)

,

where I omit the argument z of the estimators. Since biases are bounded (since D
is) and the support of η is in ∆∗(Θ), by dominated convergence

lim inf
k→∞

Eη[(τ̂π(rIk)− τθ)2] = lim inf
k→∞

Eη Varθ(τ̂π(rIk)) + Eηβ̄2
θ

≥ Eη lim inf
k→∞

Eπ Varθ(τ̂π(rIk)) + Eηβ̄2
θ .

For fixed π ∈ ∆∗(Θ), lim infk→∞ Eπ Varθ(τ̂π(rIk)) is at least the minimal asymptotic
variance along a sequence τ̂kπ with bounded bias that converges to β̄, and is otherwise
unrestricted. Take such a sequence for which Eπ Varθ(τ̂kπ ) converges to its minimal
limit. Along this sequence, τ̂kπ must be bounded, so it must have a convergent
subsequence with some limit τ̂0

π in RZ for which by continuity also Eθ[τ̂0
π ]− τθ = β̄θ.

But then the variance of τ̂0
π must be at least the variance of a variance-minimizing

estimator subject to the bias constraint. Taken together,

inf
rI∈R∗

Eη[rDθ (τ̂π(rI))] ≥ lim inf
k→∞

Eη[(τ̂π(rIk)− τθ)2]

≥ Eη min
τ̂∈Cβ̄

Eπ Varθ(τ̂) + Eηβ̄2
θ .

Now, by aligned delegation,

min
τ̂∈Cβ̄

Eπ(Varθ(τ̂) + β̄2
θ ) = min

τ̂∈Cβ̄
EπrDθ (τ̂) = EπrDθ (τ̂π(rI))

for every rI ∈ R∗ for choices from Cβ̄ . It follows that for every mechanism there
is a set of biases such that the fixed-bias mechanisms has at least weakly better
worst-case (over investigator types in R∗) performance. Hence, at an optimal choice
of biases βη given the hyperprior η, the fixed-bias restriction Cη is minimax optimal.
Such a minimizer exists because the set of biases is wlog compact (indeed, we can
assume Eηβ2

θ ≤ EηrDθ (z 7→ 0) <∞) and the expected average risk continuous in the
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choice of bias.

I conjecture that the restriction of the support to priors with full support is not
necessary.

B Representation of Unbiased Estimators

As in the main text, for fixed n ≥ 1 and finite support Y I consider potential
outcomes θ = (y(1), y(0)) ∈ Θ = (Y2)n from which for treatment d ∈ {0, 1}n we
observe y = d◦y(1)+(1−d)◦y(0) ∈ Yn. (Here, ◦ denotes the Hadamard (entry-wise)
product.) The estimate of interest is τθ = 1′(y(1)− y(0))/n.

Lemma 1 (Representation of unbiased estimators). The estimator τ̂ is unbiased,
Eθ[τ̂(z)] = τθ for all potential outcomes θ ∈ Θ, if and only if:

1. For a known treatment probability p, there exist leave-one-out regression ad-
justments (φi : (Y × {0, 1})n−1 → R)ni=1 such that

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − φi(z−i)).

2. For a fixed number n1 of treated units, there exist leave-two-out regression
adjustments (φij : (Y × {0, 1})n−2 → R)i<j such that

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − φij(z−ij)),

where φij(z−ij) may be undefined outside 1′d−ij = n1 − 1.

I build up this general representation result in steps from simple estimators with
binary outcomes to general estimators with finite support.

B.1 Known treatment probability, binary outcomes

I start with known treatment probability p = Eθ[di] with di iid and binary support.
A natural class of admissible estimators are Bayes estimators, so a tempting

starting point for the analysis of optimal unbiased estimators are (limits of) Bayes
estimators that minimize average mean-squared error given the data and are also
unbiased. However:
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Remark B.1. For Y = {0, 1} and p = .5, the only unconstrained Bayes estima-
tor (with respect to average mean-squared error) that is unbiased (conditional on
(y(1), y(0))) is τ̂(y, d) = 1

n(2d − 1)′(2y − 1). For Y = {0, 1} and p 6= .5, there are
no unconstrained Bayes estimators that are also unbiased.

Sketch of proof. For any prior, the unconstrained Bayes estimator with respect to
average mean-squared error is the posterior expectation of τθ given the data. Any
posterior expectation of τθ is bounded between the maximal treatment effect +1

and the minimal treatment effect −1. To achieve unbiasedness, any data that is
consistent with either of the extremes must therefore yield an estimate of +1 or
−1, respectively. Iterating this argument, the unique unconstrained Bayes estima-
tor is the one achieved from a prior that puts full probability on (yi(1), yi(0)) ∈
{(1, 0), (0, 1)} and zero probability on the configurations {(1, 1), (0, 0)}. This yields
Eθ[yi(1)− yi(0)|yi, di] = (2di − 1)(2yi − 1), which is unbiased for p = .5, but not for
p 6= .5.

The remark implies that searching for unbiased estimators among unconstrained
Bayes estimators to characterize the class of admissible unbiased estimators is futile,
and I instead first characterize unbiased estimators before returning to optimality
by solving for constrained Bayes estimators subject to the resulting representation.

Theorem B.1. For Y = {0, 1}, assume that the estimators τ̂A, τ̂B are unbiased τθ
(conditional on θ = (y(1), y(0))). Then,

τ̂B(y, d)− τ̂A(y, d) =
1

n

n∑
i=1

di − p
p(1− p)

φi(y−i, d−i)

for a set of functions φi : (Y × {0, 1})n−1 → R.

For n = 2, the proof of Theorem B.1 can be made on a two-dimensional lattice
folded into a torus. The general proof can similarly be understood as summing over
hypercubes on the surface of an n-torus.

Proof. For δ̂(y, d) = τ̂B(y, d)− τ̂A(y, d), take φi(y−i, d−i) such that

δ̂(y, d) =
1

n

n∑
i=1

di − p
p(1− p)

φi(y−i, d−i) (9)
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for all (y, d) with y′d > 0 (that is, all those that include some pair (yj , dj) = (1, 1)).
This is always feasible, say by the following inductive construction:

1. Set the φi(1n−1,1n−1) in any way that has (9) hold for δ̂(1n,1n).

2. Assuming that φi(y−i, d−i) has been set for all i and (y, d) with y′d ≥ n − k
such that (9) holds for such (y, d) (as is the case for k = 0 by the previous step),
consider (y, d) with y′d = n−(k+1). Among the terms φi(y−i, d−i) in (9), those
with y′−id−i = n− (k+ 1) have already been set by the induction assumption,
and it remains to show that we can set conformable terms φi(y−i, d−i) for
y′−id−i = n− (k + 2).

Provided that k < n− 1, note that any (y, d) with y′d = n− (k + 1) contains
at least one (yi, di) with y′idi = 1, δ̂(y, d) has the term φi(y−i, d−i) appear on
the right in (9), where thus y′−id−i = y′d − 1 = n − (k + 2) (so it has not
yet been set). But note that this specific φi(y−i, d−i) also appears only for
that (y, d) among all (y, d) with y′d = n − (k + 1) as necessarily y′idi = 1.
Hence, we can set all previously undetermined φi(y−i, d−i) for all i and y′d

with y′d ≥ n− (k + 1) in a way that (9) holds for such (y, d).

By induction, we have set all φi(y−i, d−i) for any i and y′d ≥ 1 conformably with
(9) for such (y, d). since this includes all terms of the form φi(y−i, d−i), it remains
to show that the unbiasedness assumption implies that (9) extends to (y, d) with
y′d = 0.

Write δ̂φ for the function defined by (9) for all (y, d). We have thus shown that
δ̂φ(y, d) = δ̂(y, d) for all (y, d) with y′d > 0. By assumption, Eθ[δ̂(y, d)] = 0 for all
θ = (y(1), y(0)), so

0 = Eθ[δ̂(y, d)] =
∑

d∈{0,1}n
P(d) δ̂(d ◦ y(1) + (1− d) ◦ y(0), d).

Fixing (y∗, d∗), it follows for any ỹ that

δ̂(y∗, d∗) = −
∑

d∈{0,1}n\{d∗}

P(d)/P(d∗) δ̂((1di=d∗i )
n
i=1 ◦ y∗ + (1di 6=d∗i )

n
i=1 ◦ ỹ, d) (10)

Since δ̂φ is similarly zero-bias by construction, the same holds for δ̂φ. Thus, if for
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some (y∗, d∗) δ̂ and δ̂φ agree on

ỹ∗(d) = (1di=d∗i )
n
i=1 ◦ y∗ + (1di 6=d∗i )

n
i=1 ◦ ỹ, d)

for some ỹ and all d 6= d∗, then δ̂(y∗, d∗) = δ̂φ(y∗, d∗).
We are ready to show (9) for all (y∗, d∗), by induction over 1′d∗. We let ỹ = 1

throughout. At k = 0, d∗ = 0. For any d 6= d∗, ỹ∗(d)′d ≥ 1, so δ̂(ỹ∗(d), d) =

δ̂φ(ỹ∗(d), d). By (10), δ̂(y∗, d∗) = δ̂φ(y∗, d∗). Assume now that the claim holds for
all (y∗, d∗) with 1′d∗ ≤ k, and consider some (y∗, d∗) with 1′d∗ = k+1. Then, for any
d 6= d∗ with 1′d ≤ k, δ̂(y∗, d∗) = δ̂φ(y∗, d∗) by the induction assumption. For any
d 6= d∗ with 1′d ≥ k + 1 there must be at least one dimension i with di = 1, d∗i = 0,
thus ỹ∗(d)′d ≥ 1 and δ̂(y∗, d∗) = δ̂φ(y∗, d∗) follows by construction. We conclude
that δ̂(y∗, d∗) = δ̂φ(y∗, d∗) for all (y∗, d∗).

Since τ̂(y, d) = 1
n

∑n
i=1

di−p
p(1−p)yi is unbiased for τθ, the following characterization

is immediate:

Corollary B.1. For Y = {0, 1}, any unbiased estimator τ̂ of τθ can be expressed as

τ̂ =
1

n

n∑
i=1

di − p
p(1− p)

(yi − φi(y−i, d−i)).

The following result for the special case n = 2 shows that the reduction in degrees
of freedom in the estimator implied by unbiasedness is substantial:

Remark B.2. For n = 2, the φi(y−i, d−i) are unique up to the one-dimensional
equivalence class φ′i(y−i, d−i)) = φ′i(y−i, d−i)) + (−1)i(2d3−i − 1)∆, so unbiasedness
reduces the degrees of freedom from τ̂ ∈ R16 to [φ] ∈ R7.

B.2 Fixed treatment group size, binary

Assume now that instead of the treatment probability, the number of treated is fixed
at n1, so that d ∼ U (Dn1) with Dn1 = {t ∈ {0, 1}n; t′n = n1}. Effectively, we assume
invariance to permutations in the assignment of treatment, but not more.

The natural, unbiased treatment-control-difference estimator can be written as

τ̂∗(y, d) =
1

n1

∑
di=1

yi −
1

n0

∑
di=0

yi =
1

n1n0

∑
di=1,dj=0

(yi − yj),
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of which an unbiased extension is

τ̂φ(y, d) =
1

n1n0

∑
di=1,dj=0

(yi − yj − φij(y−ij , d−ij))

with φij = −φji. I claim that these are also all extensions.

Theorem B.2. Let Y = {0, 1}. Assume that τ̂A, τ̂B are unbiased for τθ. Then,

τ̂B(y, d)− τ̂A(y, d) =
1

n1n0

∑
di=1,dj=0

φij(y−ij , d−ij), φij = −φji

for functions φij : (Y × {0, 1})n−2 → R.

Note that we can alternatively write

τ̂B(y, d)− τ̂A(y, d) =
1

n1n0

n∑
i=1

n∑
j=i+1

(di − dj) φij(y−ij , d−ij),

where we sum over each pair once and φij is only defined for j > i.
We first establish a lemma that adopts the proof strategy from Theorem B.1 to

the setting at hand. To this end, for (y(1), y(0)) ∈ (Y2)n write

N(y(1), y(0)) = {(d ◦ y(1) + (1− d) ◦ y(0), d); d ∈ Dn1}

(the set of observations consistent with y(1), y(0)) and let

C =
⋃

(y(1),y(0))∈(Y2)n

N(y(1), y(0)).

Let c : C → C− be the surjective correspondence

(y, d) 7→ {(ij, (y−ij , d−ij)); i < j, di 6= dj}.

Lemma B.1. If there exists a partition C =
⋃T
t=1 Ct such that for some T ∗

1. for C−t =
⋃

(y,d)∈Ct c(y, d) and

Dt = C−t \
⋃
s<t

C−s ,

there exists injections bt : Ct → Dt for t ≤ T ∗ and
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2. for all t > T ∗ and (y, d) ∈ Ct, there exists some (y(1), y(0)) ∈ (Y2)n both
(y, d) ∈ N(y(1), y(0)) and

(N(y(1), y(0)) \ {(y, d)}) ∩
⋃
s≥t
Cs = ∅

then for any δ̂ that is mean-zero there exist a function φ : C− → R such that δ̂ = δ̂φ

with

δ̂φ(y, d) =
1

n1n0

n∑
i=1

n∑
j=i+1

(di − dj) φij(y−ij , d−ij).

Proof. Given some δ̂, we first construct such a family φ with δ̂φ(y, d) = δ̂ for all
(y, d) ∈

⋃
t≤T ∗ Ct, and then establish that this implies δ̂φ(y, d) = δ̂ also for (y, d) ∈⋃

t>T ∗ Ct.
For the first part, I argue inductively as follows: Take t ≤ T ∗ and assume φ has

been set on
⋃
s<t C−s such that δ̂φ = δ̂ on

⋃
s<t Cs (which is given trivially for t = 1)

then for every (y, d) ∈ Ct by the first assumption of the lemma there exists a unique
term φij(y−ij , d−ij) = φ(bt(y, d)) with bt(y, d) ∈ Dt that has not yet been set, so
we can set the terms φ(Dt) in a way that δ̂φ = δ̂ on Ct and thus on

⋃
s≤t Cs. This

completes the proof of the first part.
For the second part, note that by assumption Eθ[δ̂(y, d)] = 0 for all θ = (y(1), y(0)),

so

0 = Eθ[δ̂(y, d)] =
∑

(y,d)∈N(y(1),y(0))

δ̂(y, d).

Fixing (y∗, d∗) it follows for any (y(1), y(0)) with (y∗, d∗) ∈ N(y(1), y(0)) that

δ̂(y∗, d∗) = −
∑

(y,d)∈N(y(1),y(0))\{(y∗,d∗)}

δ̂(y, d) (11)

Since δ̂φ is similarly zero-bias by construction, the same holds for δ̂φ. We are now
ready to show that δ̂φ = δ̂ for all (y, d) ∈ Ct, by induction over t. For some t > T ∗,
assuming δ̂φ = δ̂ holds for all (y, d) ∈ Cs with s < t (as is the case for all s ≤ T ∗),
take any (y∗, d∗) ∈ Ct. By the second part of the lemma, (11) and the induction
assumption we must have δ̂(y∗, d∗) = δ̂φ(y∗, d∗). This completes the proof.
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We are ready to prove the main result:

Proof of Theorem B.2. δ̂(y, d) = τ̂B(y, d)− τ̂A(y, d) is a unbiased estimator of zero.
Define a, b : C → N0 by

a(y, d) = y′d, b(y, d) = (1− y)′(1− d).

Note that a(y, d) + b(y, d) ≤ n.
First, set T ∗ = n− 1 and for every t ≤ T

Ct = {(y, d) ∈ C; min(a(y, d), b(y, d)) ≥ 1, a(y, d) + b(y, d) = n+ 1− t}.

Then the first assumption of Lemma B.1 is fulfilled, as for every (y, d) ∈ Ct there
exists some (ij, (y−ij , d−ij) ∈ Ct with y′−ijd−ij + (1− y−ij)′(1− d−ij) = n− 1− t =

a(y, d) + b(y, d)− 2, but (y, d) is also the unique element in Ct covering that element
of Dt under the correspondence c (as indeed necessarily yi = di, yj = dj , which pins
down (y, d) from (ij, (y−ij , d−ij)).

Second, with T = n+ 1 and

Cn = {(y, d) ∈ C; a(y, d) = 0, b(y, d) ≥ 1},

Cn+1 = {(y, d) ∈ C; b(y, d) = 0},

note that for each (y∗, d∗) ∈ Cn ∪Cn+1 we have that (y(1), y(0)) = (y∗ ◦ d∗+1 ◦ (1−
d∗), y∗ ◦ (1− d∗)) produces

N(y(1), y(0)) ∩ {(y, d) ∈ C; min(a(y, d), b(y, d)) = 0} = {(y∗, d∗)}

for (y∗, d∗) ∈ Cn and

N(y(1), y(0)) ∩ {(y, d) ∈ C; b(y, d) = 0} = {(y∗, d∗)}

for (y∗, d∗) ∈ Cn+1. This verifies the second assumption of Lemma B.1.

Unbiased estimators (for binary outcomes) are thus fully characterized by leave-
two-out adjustments. Note that leave-one-out adjustments as in the case of known
treatment probability p would not generally be unbiased.
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B.3 Extension to finite support

Take some distribution over the treatment assignment vector d ∈ {0, 1}n, data
(y(1), y(0)) ∈ (Y2)n as before where Y ⊆ R, and y = d ◦ y(1) + (1 − d) ◦ y(0).
Our goal now is to extend a representation for binary outcomes to one for finite (but
arbitrarily large) support Y.

Lemma B.2. Assume that for Y = {0, 1} any δ̂ with Eθ[δ(y, d)] = 0 for all θ =

(y(1), y(0)) permits a representation δ̂ = δ̂φ with

δ̂φ(y, d) =
∑
ι∈I

wι(dSι)φι(y−Sι , d−Sι)

for fixed I, (wι)ι∈I , (Sι)ι∈I (where I finite) and variable (φι)ι∈I where

φι : (Y × {0, 1}){1,...,n}\Sι → R.

Then the representation result extends to any finite Y ⊆ R (with the same I, (wι)ι∈I , (Sι)ι∈I).

Proof. Write Y` = {0, 1, . . . , `} and define (for ` ≥ 2,m ≥ 0)

Y`,m =
m

×
i=1

Y2`−1 ×
n

×
i=m+1

Y`

We first establish the following intermediate result by induction over t = ns+m

from t = 0: For any (s,m) ∈ (N0 × {1, . . . , n}) ∪ {(0, 0)} for ` = 2s + 1 any δ̂ with
Eθ[δ̂(y, d)] = 0 for all θ = (y(1), y(0)) ∈ Y2

`,m permits a representation δ̂ = δ̂φ as
above with φι :×i∈{1,...,n}\Sι(Y`,m)i → R

For t = 0, the statement holds by the assumption of the lemma. Assume now
that its holds for t with such (s,m) such that t = ns+m and ` = 2s+1, and consider
the (s+,m+) ∈ N0 × {1, . . . , n} with ns+ + m+ = t + 1, and write `+ = 2s

+
+ 1

Fix an estimator δ̂ with Eθ[δ̂(y, d)] = 0 for all θ = (y(1), y(0)) ∈ Y2
`+,m+ . Write

For (y, d) ∈ Y`,m × {0, 1}n define y+
m+ = `+ + ym+ − 1, y+

−m+ = y−m+ as well as
y−
m+ = `+, y−−m+ = y−m+ to obtain y+, y− ∈ Y`+,m+ , and define estimators by

δ̂1(y, d) = δ̂(y+, d)− δ̂(y−, d) δ̂2(y, d) = δ̂(y, d)

where thus δ̂2 is merely a restriction of δ̂ to Y`,m × {0, 1}n. For (y, d) ∈ Y`+,m+ ×
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{0, 1}n define ȳm+ = min(ym+ , `+), ȳ−m+ = y−m+ to obtain a ȳ ∈ Y2
`,m for which

δ̂(y, d) = δ̂(y, d)− δ̂(ȳm+ , d) + δ̂(ȳm+ , d)

= δ̂1(y − ȳm+ , d) + δ̂2(ȳm+ , d).

δ̂2 is unbiased (for Y`,m) by construction. Note that

Eθ[δ̂1(y, d)] = Eθ[δ̂(y+, d)]− Eθ[δ̂(y−, d)] = 0

for any y(1), y(0) ∈ Y`,m, as they generate y+(1), y+(0) ∈ Y`+,m+ for which δ̂ is
unbiased by assumption, so δ̂1 is likewise unbiased (for y(1), y(0) ∈ Y`,m). By the
induction assumption, there are thus φ1, φ2 with

δ̂(y, d) =
∑
ι∈I

wι(dSι)(φ
1
ι ((y − ȳm+)−Sι , d−Sι) + φ2

ι ((ȳm+)−Sι , d−Sι)

for any (y, d) ∈ Y`+,m+ × {0, 1}n. For

φι(y−Sι , d−Sι) = φ1
ι (y−Sι − (ȳm+)−Sι , d−Sι) + φ2

ι ((ȳm+)−Sι , d−Sι)

we therefore have δ̂ = δ̂φ. This concludes the induction step and thus the proof of
the intermediate result.

Setting m = n, it is immediate that the statement of the lemma holds for all
Y = Y2s+1. Since it will always hold for subsets, it holds for all Y = Y`. Now take
arbitrary Y = {z1, . . . , z`}, and define for (y, d) ∈ (Y` × {0, 1})n

δ̃(y, d) = δ̂(zy, d)

where (zy)i = zyi ∈ Y. By the intermediate result there is some φ̃ such that δ̃ = δ̂φ̃.
Setting φι(y−Sι , d−Sι) = φ̃(ỹ−Sι , d−Sι) with ỹ such that zỹ = y yields δ̂(y, d) =

δ̂φ(y, d).

We are now ready to proof the representation result in the main paper.

Proof of Lemma 1. The representation for general finite support follows from Lemma B.2
applied to the binary representation results in Theorem B.1 and Theorem B.2, re-
spectively.
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C Characterization of Optimal Unbiased Estimators

When is an estimator not just unbiased, but has also low average mean-squared
error? I start with the representation

τ̂φ(y, d) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − φi(y−i, d−i))

for known treatment probability p and consider the error

∆φ
θ (y, d) = τ̂φ(y, d)− τθ

=
1

n

n∑
i=1

(
di − p
p(1− p)

(yi − φi(y−i, d−i))− (y(1)i − y(0)i)

)

=
1

n

n∑
i=1

di − p
p(1− p)

(ȳi − φi(y−i, d−i))

for the adjustment oracle ȳi = (1 − p)y(1)i + py(0)i, which would be the loss-
minimizing choice for φi(y−i, d−i).

Proposition C.1. For some prior π over θ = (y(1), y(0)), any φ∗π with

φ∗π(y−i, d−i) = Eπ [ȳi|y−i, d−i]

is a (global) minimizer of average loss EπLθ(φ), where Lθ(φ) = Eθ(∆
φ
θ (y, d))2.

Proof. The restriction that adjustments φi(y−i, d−i) are functions only of y−i, d−i
(and of π) requires some care, as each such adjustments appears given multiple
draws of (y, d). Write

Mi(y
∗
−i, d

∗
−i) = {(y, d) ∈ (Y × {0, 1})n; (y−i, d−i) = (y∗−i, d

∗
−i)}

for the (y, d) for which τ̂φ(y, d) (and thus ∆φ
θ (y, d)) includes the term φi(y

∗
−i, d

∗
−i).

Then,

∂ EπLθ(φ)

∂φi(y∗−i, d
∗
−i)

=
∂ Eπ

[
1(y,d)∈M(y∗−i,d

∗
−i)

(∆φ
θ (y, d))2

]
∂φi(y∗−i, d

∗
−i)

=Eπ

[
1(y,d)∈M(y∗−i,d

∗
−i)

∂(∆φ
θ (y, d))2

∂φi(y∗−i, d
∗
−i)

]
,
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where we note that we can exchange differentiation and integration because all sum-
mands are bounded. I omit writing Eθ explicitly inside Eπ and consider the joint
distribution of θ and z. Here, for all (y, d) ∈M(y∗−i, d

∗
−i),

∂(∆φ
θ (y, d))2

∂φi(y∗−i, d
∗
−i)

= − 2

n

di − p
p(1− p)

∆φ
θ (y, d)

= − 2

n2

 (di − p)2

(p(1− p))2
(ȳi − φi(y∗−i, d∗−i)) +

∑
j 6=i

(di − p)(d∗j − p)
(p(1− p))2

(ȳj − φj(y−j , d−j))

 .

The first-order condition ∂ EπLθ(φ)
∂φi(y∗−i,d

∗
−i)

= 0 is therefore

Eπ
[
1(y,d)∈M(y∗−i,d

∗
−i)

(di − p)2(φi(y
∗
−i, d

∗
−i)− ȳi)

]
= −

∑
j 6=i

(d∗j − p)Eπ
[
1(y,d)∈M(y∗−i,d

∗
−i)

(di − p)(φj(y−j , d−j)− ȳj)
]
.

The condition is trivially fulfilled for Pπ((y, d) ∈ M(y∗−i, d
∗
−i)) = 0. Otherwise,

equivalently

=p(1−p)(φi(y∗−i,d∗−i)−Eπ [ȳi|(y−i,d−i)=(y∗−i,d
∗
−i)])︷ ︸︸ ︷

E[(di − p)2]φi(y
∗
−i, d

∗
−i)− Eπ[(di − p)2ȳi|(y−i, d−i) = (y∗−i, d

∗
−i)]

= −
∑
j 6=i

(2d∗j − 1)Eπ
[
(di − p)φj(y−j , d−j)|(y−i, d−i) = (y∗−i, d

∗
−i)
]

Note that this system of first-order conditions will generally have many solutions,
as the φ-representation of τ̂φ is not generally unique. I now show that the specific
choice

φi(y
∗
−i, d

∗
−i) = Eπ[ȳi|(y−i, d−i) = (y∗−i, d

∗
−i)]

(for Eπ Pd((y, d) ∈M(y∗−i, d
∗
−i)) > 0, otherwise, say, zero) is a (global) posterior-loss
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minimizer. To that end, note that for i 6= j

Eπ [(di − p)Eπ[ȳj |y−j , d−j ]|y−i, d−i]

= Eπ [(di − p)Eπ[ȳj |yi, di, y−ij , d−ij ]|yj , dj , y−ij , d−ij ]

= Eπ [Eπ [(di − p)Eπ[ȳj |yi, di, y−ij , d−ij ]|di, y−ij , d−ij ] |y−ij , d−ij ]

= Eπ [(di − p)Eπ[ȳj |di, y−ij , d−ij ]|y−ij , d−ij ]

= Eπ [(di − p)Eπ[ȳj |y−ij , d−ij ]|y−ij , d−ij ] = 0.

The first-order condition follows. Also

∂2 EπLθ(φ)

∂φi(yA−i, d
A
−i)∂φj(y

B
−j , d

B
−j)

=
1

(p(1− p)n)2
Eπ
[
1(y,d)∈M(yA−i,d

A
−i)∩M(yB−j ,d

B
−j)

(dBi − p)(dAj − p)
]

=


1

p(1−p)n2 Pπ((y−i, d−i) = (yA−i, d
A
−i)), (i, yA−i, d

A
−i) = (j, yB−j , d

B
−j)

(d∗i−p)(d∗j−p)
(p(1−p)n)2 Pπ(y∗, d∗), i 6= j, (y

A/B
−i/j , x

A/B
−i/j) = (y∗−i/j , d

∗
−i/j)

0, otherwise.

Note that ∂2 EπLθ(φ)

∂φi(yA−i,d
A
−i)∂φj(y

B
−j ,d

B
−j)

is two times the variance-covariance matrix of the

(mean-zero) random variables 1(y,d)∈M(y∗−i,d
∗
−i)

di−p
p(1−p)n , and therefore everywhere pos-

itive semi-definite. It follows that the first-order conditions locate a (global) mini-
mum.

The proposition directly yields the first part of the general characterization result
in the main paper. The second part follows analogously with oracle adjustments

∆ȳij =
(n0

n
yi(1) +

n1

n
yi(0)

)
︸ ︷︷ ︸

¯̄y)i

−
(n0

n
yj(1) +

n1

n
yj(0)

)
.

Theorem 2 (Solution of the investigator). An investigator with risk r ∈ R∗ and
prior π over Θ chooses the following unbiased Bayes estimators:

1. For a known treatment probability p,

τ̂(z) =
1

n

n∑
i=1

di − p
p(1− p)

(yi − Eπ[ȳi|z−i]).
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2. For a fixed number n1 of treated units,

τ̂(z) =
1

n1n0

∑
i<j

(di − dj)(yi − yj − Eπ[∆ȳij |z−ij ]).

Proof. The first part is immediate from Proposition C.1. For the second part, we
can wlog consider adjustments

φi;j(y−ij , d−ij) (12)

for which we set φij(y−ij , d−ij) = φi;j(y−ij , d−ij)− φj;i(y−ij , d−ij) to find

∆φ
θ (y, d) = τ̂φ(y, d)− τθ

=
1

n1n0

∑
i<j

(di − dj) ((¯̄yi − φi;j(y−ij , d−ij))− (¯̄yj − φj;i(y−ij , d−ij)))

=
1

n1n0

∑
i,j

(di − dj)(¯̄yi − φi;j(y−ij , d−ij)).

As in the proof of Proposition C.1, we can then verify that the choice

φi;j(y−ij , d−ij) = Eπ[¯̄yi|y−ij , d−ij ]

fulfils the associated first-order condition.

D OLS is Biased

Consider a sample of n units (yi, di, xi), where di ∈ {0, 1} are iid given x1, . . . , xn

with P(di = 1) = p ∈ (0, 1).

D.1 Conditional on covariates

Conditional on covariates xi = 1i=1 and for yi = xidi, the sample-averge treatment
effect is τ = 1/n (one for the first unit, zero for all other units). The coefficient
τ̂OLS on d in a linear regression of y on d and x (with intercept) has expectation
E[τ̂OLS|n1] = 0 conditional on any number 1 < n1 < n− 1 of treated units. Indeed,
x perfectly explains y, so the coefficient on d will always be zero (by Frisch-Waugh
or otherwise).
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D.2 Over the sampling distribution

Assume that xi ∈ Rkn+1 with P(xi0) = q ∈ (0, 1) and

xi1, . . . , xik|xi0
iid∼ (1− xi0) · N (0, 1)

(that is, xij = 0 for all j > 0 if xi0 = 1), xi iid across units. (Alternatively, any
non-degenerate distribution will do.) Let yi = xi0di. The average treatment effect
of di on yi is

τpop = E[yi|di = 1]− E[yi|di = 0] = q.

Let τ̂OLS be the coefficient on d in a linear regression of y on d and x (with intercept).
For kn/n→ α ∈ (0, 1− q) as n→∞ we also find

τ̂OLS P→ q

1− α
.

Indeed, writing Ax for the annihilator matrix with respect to x and the intercept,
by Frisch-Waugh τ̂OLS = d′Axy

d′Axd
with

E[d′Axy|x] = p(1− p)(nx=1 − 1),

E[d′Axd|x] = p(1− p) trace(Ax) = p(1− p)(n− kn − 1).

By the law of large numbers (where variances are suitably bounded),

d′Axy

n

P→ p(1− p)E[nx=1/n] = p(1− p)q,

d′Axy

n

P→ p(1− p)(1− α).

E Asymptotic Inference

In this section, I derive asymptotically valid inference of the average treatment effect.
These results deviate from the approach in the main paper in two notable, related
ways. First, I assume that potential outcomes and controls themselves are sampled
iid from a population distribution, and inference will not condition on their realiza-
tions. Second, in order to obtain valid inference, I take large-sample approximations.
The estimator of interest is still unbiased in finite samples for the sample-average
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treatment effect. But for efficiency and inference I focus on the estimation of the
population-average treatment effect in large samples.

Building up to a characterization of the variance of the treatment-effect estimator
in terms of out-of-sample prediction quality, I first state an auxiliary remark that
will simplify the proof of the main result.

Remark E.1 (K-fold variance bound). Consider n square-integrable, mean-zero
random variables a1, . . . , an and a partition

⋃K
k=1 Ik = {1, . . . , n} such that, for all

k, E[aiaj ] = 0 for all i, j ∈ Ik. Then,

Var (
∑n

i=1 ai) ≤ K
n∑
i=1

Var(ai).

Proof. By Cauchy-Schwarz, applied once per row, we find that

Var (
∑n

i=1 ai) = Var
(∑K

k=1

∑
i∈Ik ai

)
≤
(∑K

k=1

√
Var

(∑
i∈Ik ai

))2

≤ K
K∑
k=1

Var
(∑

i∈Ik ai

)
= K

K∑
k=1

∑
i∈Ik

Var(ai),

where the last equality follows because increments are uncorrelated within folds.

I assume that potential outcomes and control variables are drawn iid from a
population distribution

(yi(1), yi(0), xi)
iid∼ P,

treatment is assigned according to a known treatment probability P(di = 1) = p ∈
(0, 1), and data (yi, di, xi) obtained from yi = yi(di).

In this section, I focus on K-fold estimators similar to those in Remark 5.1.
Specifically, I assume that a sample of size n is divided into K equally-sized folds

K⋃
k=1

Ik = {1, . . . , n}

(so I implicitly assume that K divides n). In this setting, I consider the asymptotic
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distribution of the estimator

τ̂ =
1

n

K∑
k=1

∑
i∈Ik

di − p
p(1− p)

(yi − f̂k(xi))

of the population-average treatment effect τ = E[y(1)−y(0)], where each f̂k : X → R
is fitted only on folds other than Ik. My first result characterizes the asymptotic
distribution of τ̂ . Throughout, I use indices i and k outside sums for a representative
draw from the respective distribution.

Theorem E.1 (Asymptotic distribution of K-fold estimator). Assume that

1. E[Var(f̂k(xi)|xi)]→ 0 as n→∞,

2. E
[(

1−p
p

)2di−1
(yi − f̂k(xi))2

]
→ L (where i ∈ Ik), and

3. E[(f̂k(xi)− yi)2+δ] < C <∞ for some δ, C > 0.

Then,

√
n(τ̂ − τ)

d−→ N (0, s2), s2 =
L

p(1− p)
− τ2.

Note that the distribution of prediction functions f̂k will depend on the sample
size of the training sample, and thus on n. Furthermore, the result can be extended
to the case where the population distribution itself depends on n.

The first condition expresses that the prediction variance vanishes and predictions
stabilize in large samples. The second condition defines the asymptotic prediction
loss of the algorithm. The third condition is a mild regularity assumption that
will ensure asymptotic convergence. When this condition holds, I do not require
the assumption of bounded support of potential outcomes from the main paper.
Importantly, I do not assume that the prediction functions approximate the best
prediction of y given x or are risk-consistent.
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Proof of Theorem E.1. Write ti = di−p
p(1−p) . I decompose

√
n(τ̂ − τ) =

1√
n

K∑
k=1

∑
i∈Ik

(ti(yi − f̂k(xi))− τ)

=
1√
n

K∑
k=1

∑
i∈Ik

(ti(yi − E[f̂k(xi)|xi]︸ ︷︷ ︸
=gn(xi)

) + ti(E[f̂k(xi)|xi]− f̂k(xi))− τ)

=
1√
n

n∑
i=1

(ti(yi − gn(xi))− τ) +
1√
n

K∑
k=1

∑
i∈Ik

ti(f̂k(xi)− gn(xi)).

For the first part, note that E[(ti(yi − gn(xi)) − τ)2+δ] is bounded, uniformly in n.
Its expectation is zero and its variance is

s2
n = Var

(
1√
n

n∑
i=1

(ti(yi − gn(xi))− τ)

)
= Var (ti(yi − gn(xi)))

= E
[
t2i︸︷︷︸

=
(
di−p
p(1−p)

)2
= 1
p(1−p)

(
1−p
p

)2di−1

(yi − gn(xi))
2
]
− (E[ti(yi − gn(xi))]︸ ︷︷ ︸

=τ

)2

=

E
[(

1−p
p

)2di−1
(yi − gn(xi))

2

]
p(1− p)

− τ2.

Hence, by the Lyapunov CLT for triangular arrays,

1√
ns2

n

n∑
i=1

(ti(yi − gn(xi))− τ)
d−→ N (0, 1).

Combining the first two assumptions,

E

[(
1− p
p

)2di−1

(yi − gn(xi))
2

]
→ L,

so we obtain that s2
n → s2 = L

p(1−p) − τ
2 and thus

1√
n

n∑
i=1

(ti(yi − gn(xi))− τ)
d−→ N (0, s2).

72



For the second part, by Remark E.1

Var

 1√
n

K∑
k=1

∑
i∈Ik

ti(f̂k(xi)− gn(xi))


≤ K

n

K∑
k=1

∑
i∈Ik

Var
(
ti(f̂k(xi)− gn(xi))

)
= K E

[
t2i (f̂k(xi)− gn(xi))

2
]

= K E

[(
di − p
p(1− p)

)2
]
E
[
(f̂k(xi)− gn(xi))

2
]

=
K

p(1− p)
E
[
(f̂k(xi)− E[f̂k(xi)|xi])2

]
=

K

p(1− p)
E
[
Var(f̂k(xi)|xi)

]
−→ 0

as n→∞. In particular,

1√
n

K∑
k=1

∑
i∈Ik

ti(f̂k(xi)− gn(xi))
P−→ 0.

The claim of the theorem follows.

The asymptotic variance is a function of the expected prediction loss and the
treatment effect, and can be estimated consistently from the sample analogs.

Remark E.2 (Asymptotically valid variance estimate). Under the assumptions of
Theorem E.1, the asymptotic variance of τ̂ can be estimated consistently by

ŝ2 =
1

n− 1

K∑
k=1

∑
i∈Ik

(
di − p
p(1− p)

(yi − f̂k(xi))− τ̂
)2

.

As a consequence, we can construct asymptotically valid standard errors and
Normal-theory confidence intervals from ŝ2. To be more precise, ŝ√

n
is a valid stan-

dard error for τ̂ , and

[τ̂ − z1−α/2
ŝ√
n
, τ̂ + z1−α/2

ŝ√
n

]

a 1−α confidence interval for τ (where z1−α/2 is the 1−α/2-quantile of the standard
Normal distribution).

The asymptotic results extend to the case of fixed n1 (by setting p = n1/n),
exact cross-fitting as in Remark 5.1 with balanced folds, and folds that are only
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approximately of the same size or only approximately balanced.
Now that we have established asymptotically valid inference, I am ready to return

to preference alignment.

Remark E.3 (Alignment over precision). Assume the investigator chooses among
unbiased estimators, that is, by Lemma 1 among regression adjustments. Assume
further that she constructs regression adjustments in a K-fold procedure with (a se-
quence of) prediction functions that fulfill the regularity assumptions for asymptot-
ically valid inference in Theorem E.1. Then, if the investigator wants to obtain
small standard errors or tight confidence intervals, her choices are aligned with the
designer’s preference for low mean-squared error E[(τ̂ − τ)2] among these unbiased
estimators.

Proof. The asymptotic distribution of τ̂ as well as the probability limit of ŝ2 only
depend on the asymptotic loss L, the treatment probability p, and the treatment
effect τ . The investigator through her choice of adjustments can only control L,
and for these preferences chooses a sequence of prediction functions that minimizes
asymptotic prediction loss. This is also the variance-minimizing choice the designer
prefers. (Since L is non-random, the specific utility function over the size of standard
errors or confidence intervals does not matter here.)

Note that unbiasedness is crucial to reduce the degrees of freedom over the asymp-
totic distribution to the variance, with respect to which designer and investigator are
aligned. Conversely, designer and investigator may have different preferences over
the bias-variance trade-off, so allowing for (asymptotic) bias would break alignment
even when the estimator is asymptotically Normal.

By the same argument as in the proof of Remark E.3, choices are also aligned
over the power of a test against some null hypothesis. Since the investigator cannot
move the expectation of the estimator, the best she can do is to pick a sequence of
prediction functions for which the asymptotic loss L is minimal.

Remark E.4 (Alignment over power). Consider a sequence of population distribu-
tions with τn = τ0 + δ√

n
. Assume that the investigator constructs a one- or two-sided

test against the null hypothesis τ = τ0 by comparing the test statistic
√
n(τ̂−τ0)
ŝ to the

standard Normal distribution, and that the investigator’s (sequence of) prediction
functions fulfill the regularity assumptions in Theorem E.1. If the investigator has a
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preference for rejecting τ = τ0, then her choices are aligned with the designer’s goal
of minimizing E[(τ̂ − τ)2].

Based on the asymptotic approximation from Theorem E.1, I am now ready to
prove the result from the main paper that distribution to two researchers attains
asymptotic efficiency.

Remark 6.3 (Semi-parametric efficiency). If researchers use prediction algorithms
(An : Z → RX , z 7→ f̂n)∞n=1 with

E[(f̂n(xi)− E[ȳi|xi])2]→ 0

as n → ∞, then delegation to two researchers with risk functions in R∗ (who each
obtain access to half of the data, say) without further commitment achieves both
finite-sample unbiased estimation of τθ, and large-sample semi-parametric efficient
estimation of τ for the semi-parametric efficiency bound of Hahn (1998).

Proof of Remark 6.3. Similar to the proof of Theorem E.1, again setting ti = di−p
p(1−p) ,

I decompose

√
n(τ̂ − τ) =

1√
n

K∑
k=1

∑
i∈Ik

(ti(yi − f̂k(xi))− τ)

=
1√
n

K∑
k=1

∑
i∈Ik

(ti(yi − E[ȳi|xi]) + ti(E[ȳi|xi]− f̂k(xi))− τ)

=
1√
n

n∑
i=1

(ti(yi − E[ȳi|xi]))− τ) +
1√
n

K∑
k=1

∑
i∈Ik

ti(f̂k(xi)− E[ȳi|xi])).

The latter part converges to zero in probability by Remark E.1 as in the proof of
Theorem E.1. Since the support of potential outcomes is bounded, the first part
converges by the standard CLT to a mean-zero Normal distribution with asymptotic
variance

Var(ti(yi − E[ȳi|xi])) =
EVar(yi(1)|xi)

p
+

EVar(yi(0)|xi)
1− p

+ Var(E[yi(1)− yi(0)|xi]),

which is the efficiency bound of Hahn (1998).
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