SUPPLEMENTARY MATERIALS A

STUDY 1A AND STUDY 5 LOGO DESIGNS

Due to copyright considerations, the logos are described textually (rather than presented visually) below. The visual stimuli are available upon request.

Stan Richard’s logo featured an illustration of three brown coffee beans (one dark brown coffee bean between two light brown coffee beans), below which appeared the word “coffee” in brown block lettering.

Mark John’s logo featured a brown embroidered design above and below the words “coffee house” in brown lettering.

Craig Darcy’s logo featured the words “coffee brand” in brown lettering, above which was an illustration of a single brown coffee bean. A brown embroidery pattern surrounded the coffee bean.

Tim Barry’s logo featured a brown coffee cup with a swirl of steam above it, and below the coffee cup the words “Coffee Co” appeared in white against a brown banner.
SUPPLEMENTARY MATERIALS B

STUDY 1B AND STUDY 2 PHOTOGRAPHS

Due to copyright considerations, the photographs are described textually (rather than presented visually) below. The visual stimuli are available upon request.

One photograph depicted a series of blue mountain peaks in the distance, above which was a blue cloudy sky. Numerous grass-covered hilly peaks appeared in the foreground of the photograph, and a brown mountain path was visible in the grassy hilly peaks.

The other photograph also depicted a series of blue mountain peaks in the distance, above which was an overcast cloudy sky. Three grass-covered peaks appeared in the foreground.

STUDY 1B: INFORMATION SELECTION

To help you make your prediction, you can look at some comments that other Mechanical Turk workers have made about (Beth Smith/Pearl Jones) in the past during other competitions that she has participated in. Later in the survey, you can view 3 of these comments. Which 3 of these comments would you like to view?

- Negative comment about one of (Beth Smith’s/Pearl Jones’) previous photos
- Negative comment about (Beth Smith’s/Pearl Jones’) technical abilities
- Negative comment about (Beth Smith’s/Pearl Jones’) potential
- Positive comment about one of (Beth Smith’s/Pearl Jones’) previous photos
- Positive comment about (Beth Smith’s/Pearl Jones’) technical abilities
- Positive comment about (Beth Smith’s/Pearl Jones’) potential

STUDY 1B: PRIOR COMPETITION INFORMATION

<table>
<thead>
<tr>
<th></th>
<th>Beth Smith</th>
<th>Pearl Jones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td>18 wins</td>
<td>13 wins</td>
</tr>
<tr>
<td>Sky</td>
<td>14 wins</td>
<td>19 wins</td>
</tr>
<tr>
<td>Ocean</td>
<td>16 wins</td>
<td>17 wins</td>
</tr>
<tr>
<td>Stream</td>
<td>19 wins</td>
<td>18 wins</td>
</tr>
</tbody>
</table>
SUPPLEMENTARY MATERIALS C

STUDY 1C SCALES

Multidimensional Emotional Empathy Scale (Caruso & Mayer, 1998)

Please answer the following questions about yourself. Be as honest as you can throughout, and try not to let your responses to one question influence your response to other questions. There are no right or wrong answers.

1. I feel like crying when watching a sad movie.
2. Certain pieces of music can really move me.
3. Seeing a hurt animal by the side of the road is very upsetting.
4. I don’t give others’ feelings much thought.
5. It makes me happy when I see people being nice to each other.
6. The suffering of others deeply disturbs me.
7. I always try to tune in to the feelings of those around me.
8. I get very upset when I see a young child who is being treated meanly.
9. Too much is made of the suffering of pets or animals.
10. If someone is upset I get upset, too.
11. When I’m with other people who are laughing I join in.
12. It makes me mad to see someone treated unjustly.
13. I rarely take notice when people treat each other warmly.
14. I feel happy when I see people laughing and enjoying themselves.
15. It’s easy for me to get carried away by other people’s emotions.
16. My feelings are my own and don’t reflect how others feel.
17. If a crowd gets excited about something so do I.
18. I feel good when I help someone out or do something nice for someone.
19. I feel deeply for others.
20. I don’t cry easily.
21. I feel other people’s pain.
22. Seeing other people smile makes me smile.
23. Being around happy people makes me feel happy, too.
24. TV or news stories about injured or sick children greatly upset me.
25. I cry at sad parts of the books I read.
26. Being around people who are depressed brings my mood down.
27. I find it annoying when people cry in public.
28. It hurts to see another person in pain.
29. I get a warm feeling for someone if I see them helping another person.
30. I feel other people’s joy.
Life Orientation Test Revised Scale (LOT-R) (Scheier, Carver, & Bridges, 1994)

Please answer the following questions about yourself. Be as honest as you can throughout, and try not to let your responses to one question influence your response to other questions. There are no right or wrong answers.

1. In uncertain times, I usually expect the best.
2. If something can go wrong for me, it will.
3. I’m always optimistic about my future.
4. I hardly ever expect things to go my way.
5. I rarely count on good things happening to me.
6. Overall, I expect more good things to happen to me than bad.

General Regulatory Focus Measure (GRFM; Lockwood, Jordan, & Kunda, 2002)

1. In general, I am focused on preventing negative events in my life.
2. I am anxious that I will fall short of my responsibilities and obligations.
3. I frequently imagine how I will achieve my hopes and aspirations.
4. I often think about the person I am afraid I might become in the future.
5. I often think about the person I would ideally like to be in the future.
6. I typically focus on the success I hope to achieve in the future.
7. I often worry that I will fail to accomplish my academic goals.
8. I often think about how I will achieve academic success.
9. I often imagine myself experiencing bad things that I fear might happen to me.
10. I frequently think about how I can prevent failures in my life.
11. I am more oriented toward preventing losses than I am toward achieving gains.
12. My major goal in school right now is to achieve my academic ambitions.
13. My major goal in school right now is to avoid becoming an academic failure.
14. I see myself as someone who is primarily striving to reach my “ideal self” — to fulfill my hopes, wishes, and aspirations.
15. I see myself as someone who is primarily striving to become the self I “ought” to be — to fulfill my duties, responsibilities, and obligations.
16. In general, I am focused on achieving positive outcomes in my life.
17. I often imagine myself experiencing good things that I hope will happen to me.
18. Overall, I am more oriented toward achieving success than preventing failure.
SUPPLEMENTARY MATERIALS D

Studies 2A–2B documented the proposed phenomenon when people forecasted the competitive outcome that a male (Study 2A) and a disabled female (Study 2B) would experience. In this supplemental study we examined whether these effects would persist when people forecast the competitive outcome that will be experienced by a member of a different social category—an African American female.

Method

Three hundred two participants (mean age = 35 years; 42% male) from Mechanical Turk participated in an online study in exchange for 30 cents. The procedures were identical to those in Studies 2A–2B, with one substantive exception: All participants read that the photographers’ names were Tamika and Lakisha. As in Studies 2A–2B, all participants read that they had been randomly assigned to think about what the outcome of the competition would be for one of these two photographers. In this study, all participants also read that they had been randomly assigned to think about what the outcome would be for Lakisha. Of note, the order in which participants read the photographers’ names (i.e., “Tamika and Lakisha” or “Lakisha and Tamika”) was counterbalanced throughout the study.

Results and Discussion

Information seeking. We first calculated the information-seeking index for each participant via the procedures described in Studies 1B–2. Consistent with prior studies, skewness and kurtosis analyses revealed that the information-seeking data were normally distributed ($Z_{skew} = -.73$ and $Z_{kurt} = -.49$, both below the $Z = 3.29$ threshold of normality). Also as expected, an ANOVA revealed that there were no significant interactions between condition and order on information seeking, Fs(1, 290) ≤ .57, ps ≥ .451.

An ANOVA of condition on the information-seeking data revealed that condition significantly affected information seeking, F(2, 299) = 13.35, $p < .001$. Replicating the prior studies, planned contrasts revealed that participants in the Intended Outcome condition ($M = .69, SE = .03$) sought a greater proportion of positive information than did participants in the Unintended Outcome condition ($M = .52, SE = .03$; Fisher’s LSD: $p < .001$; Cohen’s $d = .520, 95\% CI [.243, .797]$), participants in the Natural condition ($M = .73, SE = .03$) sought a greater proportion of positive information than did participants in the Unintended Outcome condition (Fisher’s LSD: $p < .001$; Cohen’s $d = .698, 95\% CI [.410, .987]$), and participants in the Natural condition and Intended Outcome condition sought a similar proportion of positive information (Fisher’s LSD: $p = .278$; Cohen’s $d = .159, 95\% CI [−.124, .441]$).

\[1\]

In order to ensure that participants indeed inferred that the photographers were African American, we queried participants for their perceptions of the photographers’ race at the end of the survey via the same procedures described in Study 1C. The majority of participants indicated that both Lakisha (81.4%; $\chi^2(df = 1, N = 302) = 118.67, p < .001$; Cohen’s $d = 1.606, 95\% CI [1.315, 1.898]$) and Tamika (77.1%; $\chi^2(df = 1, N = 310) = 88.27, p < .001$; Cohen’s $d = 1.283, 95\% CI [1.014, 1.553]$) were African American. A robustness check revealed that the results persisted (in both pattern and significance) when analyses included only the majority of participants who believed that Lakisha and Tamika were African American.
Forecasts. Also as expected, a binary logistic regression revealed that there were no significant interactions between condition and order on forecasts ($bs \leq .08, SEs \geq .06, ps \geq .92$); thus, we collapsed across order. An omnibus chi-square analysis revealed that condition significantly affected participants’ forecasts, $\chi^2(df = 2, N = 302) = 15.92, p < .001$. Specifically, participants in the Intended Outcome condition predicted that Lakisha was more likely to win (73.80%) than did participants in the Unintended Outcome condition (48.60%), $\chi^2(df = 1, N = 208) = 13.90, p < .001$ (Cohen’s $d = .541, 95\% CI [.254, .829]$). Participants in the Natural condition also predicted that Lakisha was more likely to win (68.60%) than did participants in the Unintended Outcome condition, $\chi^2(df = 1, N = 198) = 8.30, p = .004$ (Cohen’s $d = .417, 95\% CI [.130, .705]$). Further supporting our theorizing, participants in the Natural condition and the Intended Outcome condition predicted that Lakisha was similarly likely to win, $\chi^2(df = 1, N = 196) = .59, p = .442$ (Cohen’s $d = .110, 95\% CI [−.173, .393]$).

From selective hypothesis testing to forecasts. We employed the same procedures described in Studies 2A–2B to test the mediating role of information seeking in determining the effect of condition on participants’ forecasts. Information seeking again mediated the effect of the first contrast (controlling for the second contrast) on forecasts (95% CI [.0061, .0291]; see Figure S1).

Figure S1. Mediation of Condition on Forecasts.

Notes. The path coefficients are unstandardized betas. The values in parentheses indicate the effect of condition on forecasts after controlling for the mediator. *$p < .05$ **$p < .01$ ***$p < .001$
SUPPLEMENTARY MATERIALS

Studies 2A–2B documented the proposed mediation pathway when spontaneous hypothesis testing was measured with information seeking. In this study, we examine the robustness of this mediation pathway by conducting a conceptual replication in which participants’ spontaneous hypothesis testing is measured with Study 1A’s thought listing procedure.

Also of note, this replication study counterbalanced the order in which we captured participants’ forecasts and their spontaneous hypothesis testing. Although we did not expect measurement order to influence the proposed phenomenon, we empirically examine the possibility of order effects in this supplemental study.

Method

Three hundred eight participants (mean age = 35 years; 34% male) from Mechanical Turk participated in an online study in exchange for 25 cents. The procedures were identical to those in Study 2A with several exceptions: First, all participants read that the photographers’ names were Sara Jones and Anne Smith (rather than Stan and Mark). The order in which participants read the women’s names (i.e., “Sara and Anne” or “Anne and Sara”) was counterbalanced, as was the name of the particular individual whose outcome participants learned that they had been randomly assigned to forecast. Participants were then randomly assigned to one of the three conditions described in Studies 2A–2B. Participants then completed the same forecasting measure as in Studies 2A–2B as well as the thought listing measure employed in Study 1A. The order of these measures was counterbalanced—participants who completed the thought listing measure prior to the forecasting measure were asked to type their thoughts while they generated their forecast, whereas participants who completed the thought listing measure after the forecasting measure were asked to type the thoughts that they recalled thinking while they generated their forecast.

Results and Discussion

Selective hypothesis testing. We first calculated the selective hypothesis testing index for each participant via the procedures described in Study 1A. Also as in Study 1A, skewness and kurtosis analyses revealed that the selective hypothesis testing index was normally distributed ($Z_{skew} = -1.70$ and $Z_{kurt} = -1.17$, both below the $Z = 3.29$ threshold of normality). As expected, an ANOVA revealed that there were no significant interactions between condition and order on selective hypothesis testing, $F(1, 285) \leq 1.79, ps \geq .182$.

An ANOVA of condition on the selective hypothesis testing index revealed that condition significantly affected selective hypothesis testing, $F(2, 305) = 25.73, p < .001$. Consistent with prior research (e.g., Gibson et al., 1997), planned contrasts revealed that participants in the Intended Outcome condition ($M = .69, SE = .04$) had a greater proportion of thoughts about the possibility that the photographer whose outcome they forecasted would win than did participants in the Unintended Outcome condition ($M = .31, SE = .04$), Fisher’s LSD: $p < .001$ (Cohen’s $d = .985$, 95% CI [.700, 1.270]). Supporting our theory, participants in the Natural condition ($M = .61, SE = .04$) also had a greater proportion of thoughts about the possibility that the photographer whose outcome they forecasted would win than did participants in the Unintended condition.
Forecasting the Outcome of Others’ Competitive Efforts

Outcome condition (Fisher’s LSD: \(p < .001 \); Cohen’s \(d = .723, 95\% \text{ CI} [.431, 1.016] \)), and a similar proportion of thoughts about the possibility that the photographer whose outcome they forecasted would win as did participants in the *Intended Outcome* condition (Fisher’s LSD: \(p = .130 \); Cohen’s \(d = .207, 95\% \text{ CI} [−.067, .480] \)).

Forecasts. Also as expected, a binary logistic regression revealed that there were no significant interactions between condition and order on forecasts (\(bs \leq 1.69, SEs \geq .51, ps \geq .14 \)); thus, we collapsed across order. An omnibus chi-square analysis revealed that condition significantly affected participants’ forecasts, \(\chi^2(df = 2, N = 308) = 15.70, p < .001 \). Specifically, participants in the *Intended Outcome* condition predicted that the photographer whose outcome they forecasted was more likely to win (70.30%) than did participants in the *Unintended Outcome* condition (44.20%), \(\chi(df = 1, N = 207) = 15.48, p < .001 \) (Cohen’s \(d = .546, 95\% \text{ CI} [.271, .821] \)). Participants in the *Natural* condition also predicted that the photographer whose outcome they forecasted was more likely to win (60.40%) than did participants in the *Unintended Outcome* condition, \(\chi(df = 1, N = 205) = 5.24, p = .022 \) (Cohen’s \(d = .327, 95\% \text{ CI} [.044, .611] \)). Further supporting our theorizing, participants in the *Natural* condition and the *Intended Outcome* condition predicted that the photographer whose outcome they forecasted was equally likely to win, \(\chi(df = 1, N = 204) = 2.32, p = .128 \) (Cohen’s \(d = .209, 95\% \text{ CI} [−.063, .481] \)).

From selective hypothesis testing to forecasts. We employed the same procedures described in Study 2A to test the mediating role of selective hypothesis testing in determining the effect of condition on participants’ forecasts. As hypothesized, and conceptually replicating Study 2A, selective hypothesis testing mediated the effect of the first contrast (controlling for the second contrast) on forecasts (95% CI [.034, .083]; see Figure S2).

Figure S2. Mediation of Condition on Forecasts.

Notes. The path coefficients are unstandardized betas. The values in parentheses indicate the effect of condition on forecasts after controlling for the mediator. *\(p < .05 \) **\(p < .01 \) ***\(p < .001 \)
SUPPLEMENTARY MATERIALS F

STUDY 3 MATERIALS

Due to copyright considerations, the photographs are described textually (rather than presented visually) below. The visual stimuli are available upon request.

The photographs of both Jayden Darcy and Brian Suke depicted white males with short brown hair. Both photographs depicted the individuals’ faces and upper torso, and the individuals in both photographs were smiling and looking directly at the camera. Jayden Darcy was pictured wearing a red collared shirt, whereas Brian Suke was pictured wearing a light blue collared shirt.
This study provides further insight into whether the desire to protect self-efficacy contributes to the proposed phenomenon. Participants read about an individual who they perceived as dissimilar to themselves (as well as immoral and unlikeable)—an individual who worked at a big tobacco company and who desired to produce ads targeted to encourage teenagers to smoke. As previously noted, prior research suggests that forecasting that a dissimilar other will experience a positive outcome (e.g., by achieving his intentions) is unlikely to protect one’s self-efficacy (Bandura, 1977; Bandura, 1995; Kazdin, 1974; Meichenbaum, 1977; Schunk, 1989). As a result, this self-efficacy alternative predicts that the current bias is unlikely to persist when people predict a dissimilar other’s outcome. By contrast, we theorize that an overapplication of a lay belief underlies people’s selective testing of the hypothesis that others will achieve their intentions, and that this phenomenon therefore constitutes a general bias that pervades forecasts of the outcomes that will be experienced by a wide range of others (even dissimilar others).

Moreover, this supplemental study examined whether dispositional self-efficacy and dispositional self-esteem moderate the proposed phenomenon. High self-esteem and self-efficacy function as buffers against self-threats and thus tend to moderate phenomena that are driven by a defensive motivation to protect one’s self-view (e.g., Falomir-Pichastor et al. 2013; Sweeny, Melnyk, Miller, & Shepperd, 2010; Riet, Ruiter, Werrij, & De Vries, 2008, 2010). Therefore, the self-efficacy alternative predicts that the current bias will be moderated by forecasters’ self-esteem and self-efficacy, whereas our theorizing predicts that the bias will not be moderated by forecasters’ self-esteem or self-efficacy.

Method

Six hundred two participants (mean age = 35 years; 49% male) from Mechanical Turk participated in an online study in exchange for 60 cents. All participants read that Philip Morris is a company that manufactures and sells cigarettes, and that two individuals named John Barry and Chris Marks work at Philip Morris. The order in which participants read these individuals’ names (i.e., “John Barry and Chris Marks” or “Chris Marks and John Barry”) was counterbalanced throughout the experimental session.

Participants further read that both John and Chris want to be hired as the marketing director of Philip Morris to encourage more teenagers to start smoking. In order to be hired for this job, John and Chris submitted a slogan aimed at encouraging more teenagers to start smoking into a competition at Philip Morris; the person who submitted the most persuasive slogan would be hired for the job. Participants then viewed the slogans that Chris and John

2 We conducted a pretest among participants drawn from the same pool, asking them to indicate the extent to which the person in the scenario was immoral and was likeable on separate 7-point scales (1: Not at all; 7: Very much). In addition, participants indicated the extent to which they perceived themselves as similar to this individual on a 7-point scale (1: Not at all; 7: Very much). One-sample t tests revealed that participants perceived the individual to be immoral ($M = 5.94$, significantly above the scale midpoint of 4; $t(599) = 32.42, p < .001; \text{Cohen’s }d = 1.324, 95\% \text{ CI } [1.215, 1.434]$), unlikeable ($M = 3.11$, significantly below the scale midpoint of 4, $t(599) = -13.18, p < .001; \text{Cohen’s }d = .538, 95\% \text{ CI } [.452, .624]$), and dissimilar to themselves ($M = 2.40$, significantly below the scale midpoint of 4, $t(599) = -24.07, p < .001; \text{Cohen’s }d = .982, 95\% \text{ CI } [.884, 1.079]$).
submitted to the competition: John’s submitted slogan was “a refreshing taste that’s always in style,” whereas Chris’s submitted slogan was “a smooth taste that never goes out of style.”

Next, participants read that each participant in the survey had been randomly assigned to think about what the outcome of the competition would be for either John or Chris, and that they had been randomly assigned to think about what the outcome would be for one of these two individuals. We counterbalanced whether participants next read that they had been randomly assigned to predict the outcome of the competition for either John or Chris.

Participants were then randomly assigned to one of the three conditions described in Study 1, which were manipulated as in Study 1. Next, we assessed participants’ information-seeking behavior via the same procedure described in Studies 1B–1C, this time adapted to refer to the Philip Morris competition: Participants read that to help them make their prediction, they could look at three comments that Philip Morris marketers have made about other slogans submitted to prior competitions by the individual whose outcome they were forecasting. Participants chose between six comments, three of which were consistent with the hypothesis that the individual whose outcome they were forecasting would win the competition, and three of which were consistent with the hypothesis that he would lose the competition. Each comment was labeled with a brief summary of its content (e.g., a “Negative comment about one of [John Barry’s/ Chris Marks’s] previous slogans,” a “Positive comment about one of [John Barry’s/ Chris Marks’s] previous slogans”; a “Negative comment about [John Barry’s/ Chris Marks’s] marketing abilities,” a “Positive comment about [John Barry’s/ Chris Marks’s] marketing abilities,” a “Negative comment about [John Barry’s/ Chris Marks’s] potential,” or a “Positive comment about [John Barry’s/ Chris Marks’s] potential”).

After participants completed the information-seeking index, they completed two individual difference measures: We assessed participants’ dispositional self-esteem by administering the Rosenberg Self-Esteem Scale (Rosenberg, 1965; 10 items on 4-point scales, 1 = Strongly Agree and 4 = Strongly Disagree; α = .90). We also assessed participants’ dispositional self-efficacy by administering the Generalized Self-Efficacy Scale (GSE; Schwarzer & Jerusalem, 1995; 10 items on 4-point scales, 1 = Not At All True and 7 = Exactly True; α = .89).

Results and Discussion

We first calculated the information-seeking index for each participant via the procedures described in Studies 1B–1C. As in the previous studies, skewness and kurtosis analyses revealed that the information-seeking data were normally distributed (ZKurtosis = −0.98 and ZSkew = −0.04, both below the Z = 3.29 threshold of normality). Also as expected, an ANOVA revealed that there were no significant interactions between condition and order on information seeking, Fs(1, 590) ≤ .15, ps ≥ .114; thus, we collapsed across order.

An ANOVA of condition on the information-seeking data revealed that condition significantly affected information seeking, F(2, 599) = 7.19, p = .001. Planned contrasts revealed that participants in the Intended Outcome condition (M = .56, SE = .02) sought a greater proportion of positive information than participants in the Unintended Outcome condition (M = .46, SE = .02), Fisher’s LSD: p = .001 (Cohen’s d = .333, 95% CI [.143, .523]). Supporting our theory, participants in the Natural condition (M = .55, SE = .02) also sought a greater proportion of positive information than participants in the Unintended Outcome condition (Fisher’s LSD: p
We next examined whether dispositional self-efficacy or self-esteem affected participants’ information seeking. We conducted separate linear regression analyses of information seeking as a function of each dispositional scale, the dummy-coded condition variable, and their interaction. The analyses revealed no interaction between each trait index and the Natural (vs. Unintended Outcome) conditions (Self-esteem: $F(1, 591) = .09, p = .761$; Self-efficacy: $F(1, 591) = 1.93, p = .165$), and no interaction between each trait index and the Natural (vs. Intended Outcome) conditions (Self-esteem: $F(1, 591) = .04, p = .837$; Self-efficacy: $F(1, 591) = .07, p = .786$). These results suggest that individual differences in dispositional self-efficacy and self-esteem did not drive how participants in the Natural (vs. Unintended Outcome or Intended Outcome) condition sought information. This study thus provides further evidence inconsistent with the possibility that a motivation to protect one’s own self-efficacy contributes to the current phenomenon.

In addition, this supplemental study provides initial insight into whether just world beliefs may underlie the current phenomenon. The pretest in this study revealed that participants perceived the individuals in this study as immoral (likely because these individuals desired to encourage teens to smoke; see footnote 2). The just world alternative therefore suggests that forecasters would not have applied the intent-to-outcome lay belief to these immoral others (because the just world hypothesis suggests that observers believe that bad (rather than good) outcomes happen to immoral people; Lerner, 1980; Rubin & Peplau, 1975). By contrast, this study found that people continue to selectively test the hypothesis that an immoral individual will achieve his intended outcome. This study thus provides initial evidence inconsistent with the possibility that just world beliefs underlie the current bias.