We consider the general problem of finding the minimum weight $\bm$-matching on arbitrary graphs. We prove that, whenever the linear programming (LP) relaxation of the problem has no fractional solutions, then the belief propagation (BP) algorithm converges to the correct solution. We also show that when the LP relaxation has a fractional solution then the BP algorithm can be used to solve the LP relaxation. Our proof is based on the notion of graph covers and extends the analysis of (Bayati-Shah-Sharma 2005 and Huang-Jebara 2007}.
These results are notable in the following regards: (1) It is one of a very small number of proofs showing correctness of BP without any constraint on the graph structure. (2) Variants of the proof work for both synchronous and asynchronous BP; it is the first proof of convergence and correctness of an asynchronous BP algorithm for a combinatorial optimization problem
-
Faculty
- Academic Areas
- Awards & Honors
- Seminars
-
Conferences
- Accounting Summer Camp
- California Econometrics Conference
- California Quantitative Marketing PhD Conference
- California School Conference
- China India Insights Conference
- Homo economicus, Evolving
-
Initiative on Business and Environmental Sustainability
- Political Economics (2023–24)
- Scaling Geologic Storage of CO2 (2023–24)
- A Resilient Pacific: Building Connections, Envisioning Solutions
- Adaptation and Innovation
- Changing Climate
- Civil Society
- Climate Impact Summit
- Climate Science
- Corporate Carbon Disclosures
- Earth’s Seafloor
- Environmental Justice
- Finance
- Marketing
- Operations and Information Technology
- Organizations
- Sustainability Reporting and Control
- Taking the Pulse of the Planet
- Urban Infrastructure
- Watershed Restoration
- Junior Faculty Workshop on Financial Regulation and Banking
- Ken Singleton Celebration
- Marketing Camp
- Quantitative Marketing PhD Alumni Conference
- Rising Scholars Conference
- Theory and Inference in Accounting Research
- Voices
- Publications
- Books
- Working Papers
- Case Studies
-
Research Labs & Initiatives
- Cities, Housing & Society Lab
- Corporate Governance Research Initiative
- Corporations and Society Initiative
- Golub Capital Social Impact Lab
- Policy and Innovation Initiative
- Rapid Decarbonization Initiative
- Stanford Latino Entrepreneurship Initiative
- Value Chain Innovation Initiative
- Venture Capital Initiative
- Behavioral Lab
- Data, Analytics & Research Computing