-
The Experience
-
About Stanford GSB
About Our Degree Programs
-
-
The Programs
-
Full-Time Degree Programs
Non-Degree & Certificate Programs
-
-
Faculty & Research
-
Faculty
Faculty Research
Research Hub
Centers & Institutes
-
-
Insights
-
Topics
-
-
Alumni
-
Welcome, Alumni
-
-
Events
-
Admission Events & Information Sessions
-
Discrete-Time Affine[Q] Term Structure Models with Generalized Market Prices of Risk
Discrete-Time Affine[Q] Term Structure Models with Generalized Market Prices of Risk
Review of Financial Studies. May
2010, Vol. 23, Issue 5, Pages 2184
This article develops a rich class of discrete-time, nonlinear dynamic term structure models (DTSMs). Under the risk-neutral measure, the distribution of the state vector Xt resides within a family of discrete-time affine processes that nests the exact discrete-time counterparts of the entire class of continuous-time models in Duffie and Kan (1996) and Dai and Singleton (2000). Under the historical distribution, our approach accommodates nonlinear (nonaffine) processes while leading to closed-form expressions for the conditional likelihood functions for zero-coupon bond yields. As motivation for our framework, we show that it encompasses many of the equilibrium models with habit-based preferences or recursive preferences and long-run risks. We illustrate our methods by constructing maximum likelihood estimates of a nonlinear discrete-time DTSM with habit-based preferences in which bond prices are known in closed form. We conclude that habit-based models, as typically parameterized in the literature, do not match key features of the conditional distribution of bond yields.