We consider a game-theoretical multi-agent learning problem where the feedback information can be lost during the learning process and rewards are given by a broad class of games known as variationally stable games. We propose a simple variant of the classical online gradient descent algorithm, called reweighted online gradient descent (ROGD) and show that in variationally stable games, if each agent adopts ROGD, then almost sure convergence to the set of Nash equilibria is guaranteed, even when the feedback loss is asynchronous and arbitrarily correlated among agents. We then extend the framework to deal with unknown feedback loss probabilities by using an estimator (constructed from past data) in its replacement. Finally, we further extend the framework to accommodate both asynchronous loss and stochastic rewards and establish that multi-agent ROGD learning still converges to the set of Nash equilibria in such settings. Together, these results contribute to the broad landscape of multi-agent online learning by significantly relaxing the feedback information that is required to achieve desirable outcomes.
-
Faculty
- Academic Areas
- Awards & Honors
- Seminars
-
Conferences
- Accounting Summer Camp
- California Econometrics Conference
- California Quantitative Marketing PhD Conference
- California School Conference
- China India Insights Conference
- Homo economicus, Evolving
-
Initiative on Business and Environmental Sustainability
- Political Economics (2023–24)
- Scaling Geologic Storage of CO2 (2023–24)
- A Resilient Pacific: Building Connections, Envisioning Solutions
- Adaptation and Innovation
- Changing Climate
- Civil Society
- Climate Impact Summit
- Climate Science
- Corporate Carbon Disclosures
- Earth’s Seafloor
- Environmental Justice
- Finance
- Marketing
- Operations and Information Technology
- Organizations
- Sustainability Reporting and Control
- Taking the Pulse of the Planet
- Urban Infrastructure
- Watershed Restoration
- Junior Faculty Workshop on Financial Regulation and Banking
- Ken Singleton Celebration
- Marketing Camp
- Quantitative Marketing PhD Alumni Conference
- Rising Scholars Conference
- Theory and Inference in Accounting Research
- Voices
- Publications
- Books
- Working Papers
- Case Studies
-
Research Labs & Initiatives
- Cities, Housing & Society Lab
- Corporate Governance Research Initiative
- Corporations and Society Initiative
- Golub Capital Social Impact Lab
- Policy and Innovation Initiative
- Rapid Decarbonization Initiative
- Stanford Latino Entrepreneurship Initiative
- Value Chain Innovation Initiative
- Venture Capital Initiative
- Behavioral Lab
- Data, Analytics & Research Computing