We propose a method to test a prediction of the distribution of a stochastic process. In a non-Bayesian non-parametric setting, a predicted distribution is tested using a realization of the stochastic process. A test associates a set of realizations for each predicted distribution, on which the prediction passes. So that there are no type I errors, a prediction assigns probability 1 to its test set. Nevertheless, these sets are small, in the sense that “most” distributions assign it probability 0, and hence there are few type II errors. It is also shown that there exists such a test that cannot be manipulated, in the sense that an uninformed predictor who is pretending to know the true distribution is guaranteed to fail on an uncountable number of realizations, no matter what randomized prediction he employs. The notion of a small set we use is category I, described in more detail in the paper.
-
Faculty
- Academic Areas
- Awards & Honors
- Seminars
-
Conferences
- Accounting Summer Camp
- California Econometrics Conference
- California Quantitative Marketing PhD Conference
- California School Conference
- China India Insights Conference
- Homo economicus, Evolving
-
Initiative on Business and Environmental Sustainability
- Political Economics (2023–24)
- Scaling Geologic Storage of CO2 (2023–24)
- A Resilient Pacific: Building Connections, Envisioning Solutions
- Adaptation and Innovation
- Changing Climate
- Civil Society
- Climate Impact Summit
- Climate Science
- Corporate Carbon Disclosures
- Earth’s Seafloor
- Environmental Justice
- Finance
- Marketing
- Operations and Information Technology
- Organizations
- Sustainability Reporting and Control
- Taking the Pulse of the Planet
- Urban Infrastructure
- Watershed Restoration
- Junior Faculty Workshop on Financial Regulation and Banking
- Ken Singleton Celebration
- Marketing Camp
- Quantitative Marketing PhD Alumni Conference
- Rising Scholars Conference
- Theory and Inference in Accounting Research
- Voices
- Publications
- Books
- Working Papers
- Case Studies
- Postdoctoral Scholars
-
Research Labs & Initiatives
- Cities, Housing & Society Lab
- Corporate Governance Research Initiative
- Corporations and Society Initiative
- Golub Capital Social Impact Lab
- Initiative for Financial Decision-Making
- Policy and Innovation Initiative
- Rapid Decarbonization Initiative
- Stanford Latino Entrepreneurship Initiative
- Value Chain Innovation Initiative
- Venture Capital Initiative
- Behavioral Lab
- Data, Analytics & Research Computing