Modern large language models generate texts that are virtually indistinguishable from those written by humans and achieve near-human performance in comprehension and reasoning tests. Yet, their complexity makes it difficult to explain and predict their functioning. We examined a state-of-the-art language model (GPT-3) using lexical decision tasks widely used to study the structure of semantic memory in humans. The results of four analyses showed that GPT-3’s patterns of semantic activation are broadly similar to those observed in humans, showing significantly higher semantic activation in related (e.g., “lime–lemon”) word pairs than in other-related (e.g., “sour–lemon”) or unrelated (e.g., “tourist–lemon”) word pairs. However, there are also significant differences between GPT-3 and humans. GPT-3’s semantic activation is better predicted by similarity in words’ meaning (i.e., semantic similarity) rather than their co-occurrence in the language (i.e., associative similarity). This suggests that GPT-3’s semantic network is organized around word meaning rather than their co-occurrence in text.
-
Faculty
- Academic Areas
- Awards & Honors
- Seminars
-
Conferences
- Accounting Summer Camp
- California Econometrics Conference
- California Quantitative Marketing PhD Conference
- California School Conference
- China India Insights Conference
- Homo economicus, Evolving
-
Initiative on Business and Environmental Sustainability
- Political Economics (2023–24)
- Scaling Geologic Storage of CO2 (2023–24)
- A Resilient Pacific: Building Connections, Envisioning Solutions
- Adaptation and Innovation
- Changing Climate
- Civil Society
- Climate Impact Summit
- Climate Science
- Corporate Carbon Disclosures
- Earth’s Seafloor
- Environmental Justice
- Finance
- Marketing
- Operations and Information Technology
- Organizations
- Sustainability Reporting and Control
- Taking the Pulse of the Planet
- Urban Infrastructure
- Watershed Restoration
- Junior Faculty Workshop on Financial Regulation and Banking
- Ken Singleton Celebration
- Marketing Camp
- Quantitative Marketing PhD Alumni Conference
- Rising Scholars Conference
- Theory and Inference in Accounting Research
- Voices
- Publications
- Books
- Working Papers
- Case Studies
- Postdoctoral Scholars
-
Research Labs & Initiatives
- Cities, Housing & Society Lab
- Corporate Governance Research Initiative
- Corporations and Society Initiative
- Golub Capital Social Impact Lab
- Policy and Innovation Initiative
- Rapid Decarbonization Initiative
- Stanford Latino Entrepreneurship Initiative
- Value Chain Innovation Initiative
- Venture Capital Initiative
- Behavioral Lab
- Data, Analytics & Research Computing