We formulate a private learning model to study an intrinsic tradeoff between privacy and query complexity in sequential learning. Our model involves a learner who aims to determine a scalar value, v∗, by sequentially querying an external database and receiving binary responses. In the meantime, an adversary observes the learner’s queries, though not the responses, and tries to infer from them the value of v∗. The objective of the learner is to obtain an accurate estimate of v∗ using only a small number of queries, while simultaneously protecting her privacy by making v∗ provably difficult to learn for the adversary. Our main results provide tight upper and lower bounds on the learner’s query complexity as a function of desired levels of privacy and estimation accuracy. We also construct explicit query strategies whose complexity is optimal up to an additive constant.
-
Faculty
- Academic Areas
- Awards & Honors
- Seminars
-
Conferences
- Accounting Summer Camp
- California Econometrics Conference
- California Quantitative Marketing PhD Conference
- California School Conference
- China India Insights Conference
- Homo economicus, Evolving
-
Initiative on Business and Environmental Sustainability
- Political Economics (2023–24)
- Scaling Geologic Storage of CO2 (2023–24)
- A Resilient Pacific: Building Connections, Envisioning Solutions
- Adaptation and Innovation
- Changing Climate
- Civil Society
- Climate Impact Summit
- Climate Science
- Corporate Carbon Disclosures
- Earth’s Seafloor
- Environmental Justice
- Finance
- Marketing
- Operations and Information Technology
- Organizations
- Sustainability Reporting and Control
- Taking the Pulse of the Planet
- Urban Infrastructure
- Watershed Restoration
- Junior Faculty Workshop on Financial Regulation and Banking
- Ken Singleton Celebration
- Marketing Camp
- Quantitative Marketing PhD Alumni Conference
- Rising Scholars Conference
- Theory and Inference in Accounting Research
- Voices
- Publications
- Books
- Working Papers
- Case Studies
-
Research Labs & Initiatives
- Cities, Housing & Society Lab
- Corporate Governance Research Initiative
- Corporations and Society Initiative
- Golub Capital Social Impact Lab
- Policy and Innovation Initiative
- Rapid Decarbonization Initiative
- Stanford Latino Entrepreneurship Initiative
- Value Chain Innovation Initiative
- Venture Capital Initiative
- Behavioral Lab
- Data, Analytics & Research Computing