Search-Based Peer Firms: Aggregating Investor Perception through Internet Co-Searches

Search-Based Peer Firms: Aggregating Investor Perception through Internet Co-Searches

By
Charles M. C. Lee, Paul Ma, Charles Wang
Journal of Financial Economics.
2015, Vol. 116, Issue 2, Pages 410-431

Applying a “co-search” algorithm to Internet traffic at the SEC’s EDGAR website, we develop a novel method for identifying economically-related peer firms and for measuring their relative importance. Our results show that firms appearing in chronologically adjacent searches by the same individual (Search-Based Peers or SBPs) are fundamentally similar on multiple dimensions. In direct tests, SBPs dominate GIC6 industry peers in explaining cross-sectional variations in base firms’ out-of-sample: (a) stock returns, (b) valuation multiples, (c) growth rates, (d) R&D expenditures, (e) leverage, and (f) profitability ratios. We show that SBPs are not constrained by standard industry classification, and are more dynamic, pliable, and concentrated. We also show that co-search intensity captures the degree of similarity between firms. Our results highlight the potential of the collective wisdom of investors – extracted from co-search patterns – in addressing long-standing benchmarking problems in finance.