For many machine learning algorithms, two main assumptions are required to guarantee performance. One is that the test data are drawn from the same distribution as the training data, and the other is that the model is correctly specified. In real applications, however, we often have little prior knowledge on the test data and on the underlying true model. Under model misspecification, agnostic distribution shift between training and test data leads to inaccuracy of parameter estimation and instability of prediction across unknown test data. To address these problems, we propose a novel Decorrelated Weighting Regression algorithm which jointly optimizes a variable decorrelation regularizer and a weighted regression model. The variable decorrelation regularizer estimates a weight for each sample such that variables are decorrelated on the weighted training data. Then, these weights are used in the weighted regression to improve the accuracy of estimation on the effect of each variable, thus help to improve the stability of prediction across unknown test data. Extensive experiments clearly demonstrate that our DWR algorithm can significantly improve the accuracy of parameter estimation and stability of prediction with model misspecification and agnostic distribution shift.
-
Faculty
- Academic Areas
- Awards & Honors
- Seminars
-
Conferences
- Accounting Summer Camp
- California Econometrics Conference
- California Quantitative Marketing PhD Conference
- California School Conference
- China India Insights Conference
- Homo economicus, Evolving
-
Initiative on Business and Environmental Sustainability
- Political Economics (2023–24)
- Scaling Geologic Storage of CO2 (2023–24)
- A Resilient Pacific: Building Connections, Envisioning Solutions
- Adaptation and Innovation
- Changing Climate
- Civil Society
- Climate Impact Summit
- Climate Science
- Corporate Carbon Disclosures
- Earth’s Seafloor
- Environmental Justice
- Finance
- Marketing
- Operations and Information Technology
- Organizations
- Sustainability Reporting and Control
- Taking the Pulse of the Planet
- Urban Infrastructure
- Watershed Restoration
- Junior Faculty Workshop on Financial Regulation and Banking
- Ken Singleton Celebration
- Marketing Camp
- Quantitative Marketing PhD Alumni Conference
- Rising Scholars Conference
- Theory and Inference in Accounting Research
- Voices
- Publications
- Books
- Working Papers
- Case Studies
-
Research Labs & Initiatives
- Cities, Housing & Society Lab
- Corporate Governance Research Initiative
- Corporations and Society Initiative
- Golub Capital Social Impact Lab
- Policy and Innovation Initiative
- Rapid Decarbonization Initiative
- Stanford Latino Entrepreneurship Initiative
- Value Chain Innovation Initiative
- Venture Capital Initiative
- Behavioral Lab
- Data, Analytics & Research Computing