Model selection in supervised learning provides costless guarantees as if the model that best balances bias and variance was known a priori. We study the feasibility of similar guarantees for cumulative regret minimization in the stochastic contextual bandit setting. Recent work [Marinov and Zimmert, 2021] identifies instances where no algorithm can guarantee costless regret bounds. Nevertheless, we identify benign conditions where costless model selection is feasible: gradually increasing class complexity, and diminishing marginal returns for best-in-class policy value with increasing class complexity. Our algorithm is based on a novel misspecification test, and our analysis demonstrates the benefits of using model selection for reward estimation. Unlike prior work on model selection in contextual bandits, our algorithm carefully adapts to the evolving bias-variance trade-off as more data is collected. In particular, our algorithm and analysis go beyond adapting to the complexity of the simplest realizable class and instead adapt to the complexity of the simplest class whose estimation variance dominates the bias. For short horizons, this provides improved regret guarantees that depend on the complexity of simpler classes.
-
Faculty
- Academic Areas
- Awards & Honors
- Seminars
-
Conferences
- Accounting Summer Camp
- California Econometrics Conference
- California Quantitative Marketing PhD Conference
- California School Conference
- China India Insights Conference
- Homo economicus, Evolving
-
Initiative on Business and Environmental Sustainability
- Political Economics (2023–24)
- Scaling Geologic Storage of CO2 (2023–24)
- A Resilient Pacific: Building Connections, Envisioning Solutions
- Adaptation and Innovation
- Changing Climate
- Civil Society
- Climate Impact Summit
- Climate Science
- Corporate Carbon Disclosures
- Earth’s Seafloor
- Environmental Justice
- Finance
- Marketing
- Operations and Information Technology
- Organizations
- Sustainability Reporting and Control
- Taking the Pulse of the Planet
- Urban Infrastructure
- Watershed Restoration
- Junior Faculty Workshop on Financial Regulation and Banking
- Ken Singleton Celebration
- Marketing Camp
- Quantitative Marketing PhD Alumni Conference
- Rising Scholars Conference
- Theory and Inference in Accounting Research
- Voices
- Publications
- Books
- Working Papers
- Case Studies
- Postdoctoral Scholars
-
Research Labs & Initiatives
- Cities, Housing & Society Lab
- Corporate Governance Research Initiative
- Corporations and Society Initiative
- Golub Capital Social Impact Lab
- Policy and Innovation Initiative
- Rapid Decarbonization Initiative
- Stanford Latino Entrepreneurship Initiative
- Value Chain Innovation Initiative
- Venture Capital Initiative
- Behavioral Lab
- Data, Analytics & Research Computing