People’s values provide a decision-making framework that helps guide their everyday actions. Most popular methods of assessing values show tenuous relationships with everyday behaviors. Using a new Amazon Mechanical Turk dataset (N = 767) consisting of people’s language, values, and behaviors, we explore the degree to which attaining “ground truth” is possible with regards to such complicated mental phenomena. We then apply our findings to a corpus of Facebook user (N=130,828) status updates in order to understand how core values influence the personal thoughts and behaviors that users share through social media. Our findings suggest that self-report questionnaires for abstract and complex phenomena, such as values, are inadequate for painting an accurate picture of individual mental life. Free response language data and language modeling show greater promise for understanding both the structure and content of concepts such as values and, additionally, exhibit a predictive edge over self-report questionnaires.
-
Faculty
- Academic Areas
- Awards & Honors
- Seminars
-
Conferences
- Accounting Summer Camp
- California Econometrics Conference
- California Quantitative Marketing PhD Conference
- California School Conference
- China India Insights Conference
- Homo economicus, Evolving
-
Initiative on Business and Environmental Sustainability
- Political Economics (2023–24)
- Scaling Geologic Storage of CO2 (2023–24)
- A Resilient Pacific: Building Connections, Envisioning Solutions
- Adaptation and Innovation
- Changing Climate
- Civil Society
- Climate Impact Summit
- Climate Science
- Corporate Carbon Disclosures
- Earth’s Seafloor
- Environmental Justice
- Finance
- Marketing
- Operations and Information Technology
- Organizations
- Sustainability Reporting and Control
- Taking the Pulse of the Planet
- Urban Infrastructure
- Watershed Restoration
- Junior Faculty Workshop on Financial Regulation and Banking
- Ken Singleton Celebration
- Marketing Camp
- Quantitative Marketing PhD Alumni Conference
- Rising Scholars Conference
- Theory and Inference in Accounting Research
- Voices
- Publications
- Books
- Working Papers
- Case Studies
-
Research Labs & Initiatives
- Cities, Housing & Society Lab
- Corporate Governance Research Initiative
- Corporations and Society Initiative
- Golub Capital Social Impact Lab
- Policy and Innovation Initiative
- Rapid Decarbonization Initiative
- Stanford Latino Entrepreneurship Initiative
- Value Chain Innovation Initiative
- Venture Capital Initiative
- Behavioral Lab
- Data, Analytics & Research Computing