We study the convergence of the predictive surface of regression trees and forests. To support our analysis we introduce a notion of adaptive concentration for regression trees. This approach breaks tree training into a model selection phase in which we pick the tree splits, followed by a model fitting phase where we find the best regression model consistent with these splits. We then show that the fitted regression tree concentrates around the optimal predictor with the same splits: as d and n get large, the discrepancy is with high probability bounded on the order of sqrt(log(d) log(n)/k) uniformly over the whole regression surface, where d is the dimension of the feature space, n is the number of training examples, and k is the minimum leaf size for each tree. We also provide rate-matching lower bounds for this adaptive concentration statement. From a practical perspective, our result enables us to prove consistency results for adaptively grown forests in high dimensions, and to carry out valid post-selection inference in the sense of Berk et al. [2013] for subgroups defined by tree leaves.
-
Faculty
- Academic Areas
- Awards & Honors
- Seminars
-
Conferences
- Accounting Summer Camp
- California Econometrics Conference
- California Quantitative Marketing PhD Conference
- California School Conference
- China India Insights Conference
- Homo economicus, Evolving
-
Initiative on Business and Environmental Sustainability
- Political Economics (2023–24)
- Scaling Geologic Storage of CO2 (2023–24)
- A Resilient Pacific: Building Connections, Envisioning Solutions
- Adaptation and Innovation
- Changing Climate
- Civil Society
- Climate Impact Summit
- Climate Science
- Corporate Carbon Disclosures
- Earth’s Seafloor
- Environmental Justice
- Finance
- Marketing
- Operations and Information Technology
- Organizations
- Sustainability Reporting and Control
- Taking the Pulse of the Planet
- Urban Infrastructure
- Watershed Restoration
- Junior Faculty Workshop on Financial Regulation and Banking
- Ken Singleton Celebration
- Marketing Camp
- Quantitative Marketing PhD Alumni Conference
- Rising Scholars Conference
- Theory and Inference in Accounting Research
- Voices
- Publications
- Books
- Working Papers
- Case Studies
-
Research Labs & Initiatives
- Cities, Housing & Society Lab
- Corporate Governance Research Initiative
- Corporations and Society Initiative
- Golub Capital Social Impact Lab
- Policy and Innovation Initiative
- Rapid Decarbonization Initiative
- Stanford Latino Entrepreneurship Initiative
- Value Chain Innovation Initiative
- Venture Capital Initiative
- Behavioral Lab
- Data, Analytics & Research Computing