Browse or search publications from faculty affiliated with the lab.
Presidential Address: The Economist as Designer in the Innovation Process for Socially Impactful Digital Products
This paper provides an economic perspective on data-driven innovation in digital products, focusing on the role of complex experiments in measuring and improving social impact. The discussion highlights how tools and insights from economics…
On Synthetic Difference-in-Differences and Related Estimation Methods in Stata
In this article, we describe a computational implementation of the synthetic difference-in-differences (SDID) estimator of Arkhangelsky et al. (2021, American Economic Review 111: 4088-4118) for Stata. SDID can be used in many…
Service Quality in the Gig Economy: Empirical Evidence about Driving Quality at Uber
The rise of marketplaces for goods and services has led to changes in the mechanisms used to ensure high quality. We analyze this phenomenon in the Uber market, where the system of pre-screening that prevailed in the taxi industry has been…
The Value of Non-traditional Credentials in the Labor Market
This study investigates the labor market value of credentials obtained from Massive Open Online Courses (MOOCs) and shared on business networking platforms. We conducted a randomized experiment involving more than 800,000 learners, primarily from…
Battling the Coronavirus ‘Infodemic’ among Social Media Users in Kenya and Nigeria
How can we induce social media users to be discerning when sharing information during a pandemic? An experiment on Facebook Messenger with users from Kenya (n = 7,498) and Nigeria (n = 7,794) tested interventions designed to…
Can Personalized Digital Counseling Improve Consumer Search for Modern Contraceptive Methods?
This paper analyzes a randomized controlled trial of a personalized digital counseling intervention addressing informational constraints and choice architecture, cross-randomized with discounts for long-acting reversible contraceptives (LARCs),…
Targeting, Personalization, and Engagement in an Agricultural Advisory Service
ICT is increasingly used to deliver customized information in developing countries. We examine whether individually targeting the timing of automated voice calls meaningfully increases engagement in an agricultural advisory service. We define,…
Battling the Coronavirus Infodemic Among Social Media Users in Africa
During a global pandemic, how can we best prompt social media users to demonstrate discernment in sharing information online? We ran a contextual adaptive experiment on Facebook Messenger with users in Kenya and Nigeria and tested 40 combinations…
Digital Public Health Interventions at Scale: The Impact of Social Media Advertising on Beliefs and Outcomes Related to COVID Vaccines
Public health organizations increasingly use social media advertising campaigns in pursuit of public health goals. In this paper, we evaluate the impact of about $40 million of social media advertisements that were run and experimentally tested…
Personalized Recommendations in EdTech: Evidence from a Randomized Controlled Trial
We study the impact of personalized content recommendations on the usage of an educational app for children. In a randomized controlled trial, we show that the introduction of personalized recommendations increases the consumption of content in…
Emotion- Versus Reasoning-Based Drivers of Misinformation Sharing: A Field Experiment Using Text Message Courses in Kenya
Two leading hypotheses for why individuals unintentionally share misinformation are that 1) they are unable to recognize that a post contains misinformation, and 2) they make impulsive, emotional sharing decisions without thinking about whether a…
Smiles in Profiles: Improving Fairness and Efficiency Using Estimates of User Preferences in Online Marketplaces
Online platforms often face challenges being both fair (i.e., non-discriminatory) and efficient (i.e., maximizing revenue). Using computer vision algorithms and observational data from a microlending marketplace, we find that choices made by…
Estimating Experienced Racial Segregation in U.S. Cities Using Large-Scale GPS Data
We estimate a measure of segregation, experienced isolation, that captures individuals’ exposure to diverse others in the places they visit over the course of their days. Using Global Positioning System (GPS) data collected from smartphones, we…
Shared Decision-Making: Can Improved Counseling Increase Willingness to Pay for Modern Contraceptives?
Long-acting reversible contraceptives are highly effective in preventing unintended pregnancies, but take-up remains low. This paper analyzes a randomized controlled trial of interventions addressing two barriers to long-acting reversible…
Integrating Explanation and Prediction in Computational Social Science
Computational social science is more than just large repositories of digital data and the computational methods needed to construct and analyze them. It also represents a convergence of different fields with different ways of thinking about and…
SHOPPER: A Probabilistic Model of Consumer Choice with Substitutes and Complements
We develop SHOPPER, a sequential probabilistic model of shopping data. SHOPPER uses interpretable components to model the forces that drive how a customer chooses products; in particular, we designed SHOPPER to capture how items interact with…
Economists (and Economics) in Tech Companies
As technology platforms have created new markets and new ways of acquiring information, economists have come to play an increasingly central role in tech companies-tackling problems such as platform design, strategy, pricing, and policy. Over the…
Estimation and Inference of Heterogeneous Treatment Effects using Random Forests
Many scientific and engineering challenges—ranging from personalized medicine to customized marketing recommendations—require an understanding of treatment effect heterogeneity. In this article, we develop a nonparametric causal forest …
Matrix Completion Methods for Causal Panel Data Models
In this paper we develop new methods for estimating causal effects in settings with panel data, where a subset of units are exposed to a treatment during a subset of periods, and the goal is estimating counterfactual (untreated) outcomes for the…