Browse or search publications from faculty affiliated with the lab.
Evaluating Treatment Prioritization Rules via Rank-Weighted Average Treatment Effects
There are a number of available methods for selecting whom to prioritize for treatment, including ones based on treatment effect estimation, risk scoring, and hand-crafted rules. We propose rank-weighted average treatment effect (RATE) metrics as…
Federated Offline Policy Learning
We consider the problem of learning personalized decision policies from observational bandit feedback data across multiple heterogeneous data sources. In our approach, we introduce a novel regret analysis that establishes finite-sample upper…
Qini Curves for Multi-Armed Treatment Rules
Qini curves have emerged as an attractive and popular approach for evaluating the benefit of data-driven targeting rules for treatment allocation. We propose a generalization of the Qini curve to multiple costly treatment arms that quantifies the…
Estimating Wage Disparities Using Foundation Models
One thread of empirical work in social science focuses on decomposing group differences in outcomes into unexplained components and components explained by observable factors. In this paper, we study gender wage decompositions, which require…
Service Quality in the Gig Economy: Empirical Evidence about Driving Quality at Uber
The rise of marketplaces for goods and services has led to changes in the mechanisms used to ensure high quality. We analyze this phenomenon in the Uber market, where the system of pre-screening that prevailed in the taxi industry has been…
Policy Learning with Adaptively Collected Data
In a wide variety of applications, including healthcare, bidding in first price auctions, digital recommendations, and online education, it can be beneficial to learn a policy that assigns treatments to individuals based on their characteristics…
LABOR-LLM: Language-Based Occupational Representations with Large Language Models
Many empirical studies of labor market questions rely on estimating relatively simple predictive models using small, carefully constructed longitudinal survey datasets based on hand-engineered features. Large Language Models (LLMs), trained on…
Towards Costless Model Selection in Contextual Bandits: A Bias-Variance Perspective
Model selection in supervised learning provides costless guarantees as if the model that best balances bias and variance was known a priori. We study the feasibility of similar guarantees for cumulative regret minimization in the stochastic…
Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations
When researchers develop new econometric methods it is common practice to compare the performance of the new methods to those of existing methods in Monte Carlo studies. The credibility of such Monte Carlo studies is often limited because of the…
CAREER: A Foundation Model for Labor Sequence Data
Labor economists regularly analyze employment data by fitting predictive models to small, carefully constructed longitudinal survey datasets. Although machine learning methods offer promise for such problems, these survey datasets are too small…
Digital Interventions and Habit Formation in Educational Technology
We evaluate a contest-based intervention intended to increase the usage of an educational app that helps children in India learn to read English. The evaluation included approximately 10,000 children, of whom about half were randomly selected to…
Impact Matters for Giving at Checkout
We conducted two experiments on PayPal’s Give at Checkout feature to learn about the effect of 1) information about charity outcomes on donations, and 2) exposure to these point-of-sale microgiving requests on subsequent giving. In this “…
Optimal Experimental Design for Staggered Rollouts
In this paper, we study the design and analysis of experiments conducted on a set of units over multiple time periods where the starting time of the treatment may vary by unit. The design problem involves selecting an initial treatment time for…
Evaluating Treatment Prioritization Rules via Rank-Weighted Average Treatment Effects
There are a number of available methods for selecting whom to prioritize for treatment, including ones based on treatment effect estimation, risk scoring, and handcrafted rules. We propose rank-weighted average treatment effect (RATE) metrics as…
Proportional Response: Contextual Bandits for Simple and Cumulative Regret Minimization
In many applications, e.g. in healthcare and e-commerce, the goal of a contextual bandit may be to learn an optimal treatment assignment policy at the end of the experiment. That is, to minimize simple regret. However, this objective remains…
Can Personalized Digital Counseling Improve Consumer Search for Modern Contraceptive Methods?
This paper analyzes a randomized controlled trial of a personalized digital counseling intervention addressing informational constraints and choice architecture, cross-randomized with discounts for long-acting reversible contraceptives (LARCs),…
Machine Learning Who to Nudge: Causal vs Predictive Targeting in a Field Experiment on Student Financial Aid Renewal
In many settings, interventions may be more effective for some individuals than others, so that targeting interventions may be beneficial. We analyze the value of targeting in the context of a large-scale field experiment with over 53,000 college…
Federated Causal Inference in Heterogeneous Observational Data
We are interested in estimating the effect of a treatment applied to individuals at multiple sites, where data is stored locally for each site. Due to privacy constraints, individual-level data cannot be shared across sites; the sites may also…
Machine-Learning-Based High-Benefit Approach versus Conventional High-Risk Approach in Blood Pressure Management
In medicine, clinicians treat individuals under an implicit assumption that high-risk patients would benefit most from the treatment (‘high-risk approach’). However, treating individuals with the highest estimated benefit using a novel machine-…
Decomposing Changes in the Gender Wage Gap over Worker Careers
A large literature in labor economics seeks to decompose observed gender wage gaps (GWGs) into different sources, including portions explained by cross-gender differences in education, occupation, and experience. This paper provides new methods…
Semiparametric Estimation of Treatment Effects in Randomized Experiments
We develop new semiparametric methods for estimating treatment effects. We focus on a setting where the outcome distributions may be thick tailed, where treatment effects are small, where sample sizes are large and where assignment is completely…
The Heterogeneous Earnings Impact of Job Loss Across Workers, Establishments, and Markets
Using generalized random forests and rich Swedish administrative data, we show that the earnings effects of job displacement due to establishment closures are extremely heterogeneous across workers, establishments, and markets. The decile of…
Flexible and Efficient Contextual Bandits with Heterogeneous Treatment Effect Oracles
Contextual bandit algorithms often estimate reward models to inform decision-making. However, true rewards can contain action-independent redundancies that are not relevant for decision-making. We show it is more data-efficient to estimate any…
Smiles in Profiles: Improving Fairness and Efficiency Using Estimates of User Preferences in Online Marketplaces
Online platforms often face challenges being both fair (i.e., non-discriminatory) and efficient (i.e., maximizing revenue). Using computer vision algorithms and observational data from a microlending marketplace, we find that choices made by…