In a wide variety of applications, including healthcare, bidding in first price auctions, digital recommendations, and online education, it can be beneficial to learn a policy that assigns treatments to individuals based on their characteristics. The growing policy-learning literature focuses on settings in which policies are learned from historical data in which the treatment assignment rule is fixed throughout the data-collection period. However, adaptive data collection is becoming more common in practice from two primary sources: (1) data collected from adaptive experiments that are designed to improve inferential efficiency and (2) data collected from production systems that progressively evolve an operational policy to improve performance over time (e.g., contextual bandits). Yet adaptivity complicates the problem of learning an optimal policy ex post for two reasons: first, samples are dependent and, second, an adaptive assignment rule may not assign each treatment to each type of individual sufficiently often. In this paper, we address these challenges. We propose an algorithm based on generalized augmented inverse propensity weighted (AIPW) estimators, which nonuniformly reweight the elements of a standard AIPW estimator to control worst case estimation variance. We establish a finite-sample regret upper bound for our algorithm and complement it with a regret lower bound that quantifies the fundamental difficulty of policy learning with adaptive data. When equipped with the best weighting scheme, our algorithm achieves minimax rate-optimal regret guarantees even with diminishing exploration. Finally, we demonstrate our algorithm’s effectiveness using both synthetic data and public benchmark data sets.
-
Faculty
- Academic Areas
- Awards & Honors
- Seminars
-
Conferences
- Accounting Summer Camp
- California Econometrics Conference
- California Quantitative Marketing PhD Conference
- California School Conference
- China India Insights Conference
- Homo economicus, Evolving
-
Initiative on Business and Environmental Sustainability
- Political Economics (2023–24)
- Scaling Geologic Storage of CO2 (2023–24)
- A Resilient Pacific: Building Connections, Envisioning Solutions
- Adaptation and Innovation
- Changing Climate
- Civil Society
- Climate Impact Summit
- Climate Science
- Corporate Carbon Disclosures
- Earth’s Seafloor
- Environmental Justice
- Finance
- Marketing
- Operations and Information Technology
- Organizations
- Sustainability Reporting and Control
- Taking the Pulse of the Planet
- Urban Infrastructure
- Watershed Restoration
- Junior Faculty Workshop on Financial Regulation and Banking
- Ken Singleton Celebration
- Marketing Camp
- Quantitative Marketing PhD Alumni Conference
- Rising Scholars Conference
- Theory and Inference in Accounting Research
- Voices
- Publications
- Books
- Working Papers
- Case Studies
-
Research Labs & Initiatives
- Cities, Housing & Society Lab
- Corporate Governance Research Initiative
- Corporations and Society Initiative
- Golub Capital Social Impact Lab
- Policy and Innovation Initiative
- Rapid Decarbonization Initiative
- Stanford Latino Entrepreneurship Initiative
- Value Chain Innovation Initiative
- Venture Capital Initiative
- Behavioral Lab
- Data, Analytics & Research Computing