Recent progress in data processing technology has made the accumulation and systematic organization of large volumes of data a routine activity. As a result of these developments, there is an increasing need for data-based or data-driven methods of model development. This paper describes data-driven classification methods and shows that the automatic development and refinement of decision support models is now possible when the machine is given a large (or sometimes even a small) amount of observations that express instances of a certain task domain. The classifier obtained may be used to build a decision support system, to refine or update an existing system and to understand or improve a decision-making process. The described AI classification methods are compared with statistical classification methods for a marketing application. They can act as a basis for data-driven decision support systems that have two basic components: an automated knowledge module and an advice module or, in different terms, an automated knowledge acquisition/retrieval module and a knowledge processing module. When these modules are integrated or linked, a decision support system can be created which enables an organization to make better-quality decisions, with reduced variance, probably using fewer people.
-
Faculty
- Academic Areas
- Awards & Honors
- Seminars
-
Conferences
- Accounting Summer Camp
- California Econometrics Conference
- California Quantitative Marketing PhD Conference
- California School Conference
- China India Insights Conference
- Homo economicus, Evolving
-
Initiative on Business and Environmental Sustainability
- Political Economics (2023–24)
- Scaling Geologic Storage of CO2 (2023–24)
- A Resilient Pacific: Building Connections, Envisioning Solutions
- Adaptation and Innovation
- Changing Climate
- Civil Society
- Climate Impact Summit
- Climate Science
- Corporate Carbon Disclosures
- Earth’s Seafloor
- Environmental Justice
- Finance
- Marketing
- Operations and Information Technology
- Organizations
- Sustainability Reporting and Control
- Taking the Pulse of the Planet
- Urban Infrastructure
- Watershed Restoration
- Junior Faculty Workshop on Financial Regulation and Banking
- Ken Singleton Celebration
- Marketing Camp
- Quantitative Marketing PhD Alumni Conference
- Rising Scholars Conference
- Theory and Inference in Accounting Research
- Voices
- Publications
- Books
- Working Papers
- Case Studies
-
Research Labs & Initiatives
- Cities, Housing & Society Lab
- Corporate Governance Research Initiative
- Corporations and Society Initiative
- Golub Capital Social Impact Lab
- Policy and Innovation Initiative
- Rapid Decarbonization Initiative
- Stanford Latino Entrepreneurship Initiative
- Value Chain Innovation Initiative
- Venture Capital Initiative
- Behavioral Lab
- Data, Analytics & Research Computing